ТОП авторов и книг ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ
Именно, первая [природа или пропорция] с двойным отношением есть та,
которая, с точки зрения отношения, переходит от числа 1 к числу 2. Двойной
является также и та, которая образует тело и осязаемое, поскольку она
переходит от 1 к 8. А то, что является двойным [может иметь] середину,
которая одинаковым образом больше меньшей и меньше большей части; с другой
стороны, она превосходит одну и превосходится другой частью на одну и ту же
долю своих крайних членов. Так, посредине между 6 и 12 получается величина
полуторная [для второго случая] и величина, равная целому с одной третью
[для первого случая]. Та из этих самых, которая находится [строго] посредине
того и другого, научила людей согласованному и соразмерному исполнению ради
воспитания в ритме и гармонии, даровавши [это] счастливому хороводу Муз".
Если мы правильно понимаем это место, то здесь речь идет об
универсальности диадического начала (наравне, конечно, с монадическим, о
котором вопроса тут специально не поднимается), которое определяет собою
всякое алогическое становление (например, пространство, время, движение и
пр.). Это диадическое начало, понимаемое у Платона (и у пифагорейцев) как
отношение 1:2, повторяется везде совершенно одинаково. Как от точки мы
приходим к прямой, пользуясь этим отношением, так от прямой - к плоскости и
от плоскости - к телу. Тут везде будет отношение 1:2. Если 1 считать за
точку, а 2 за прямую, что 2?2?4 будет плоскостью, а 4?2?8 будет телом. Таким
образом, мы здесь имеем уже не просто отношение, а равенство целого
множества отношений, т.е. пропорцию, "аналогию". От обычной пропорции в
нашем понимании она отличается только тем, что она обладает зрительным
характером, т.е. в данном случае геометрическим, и тем, что она - это еще
более конкретно - говорит о пространствах разных измерений. Измерения
пространства, оказывается, возникают последовательно одно из другого путем
некоторой особой операции, связанной - в представлении Платона - с
диадическим принципом. Тождество этих операций при переходе от точки к
линии, от линии к прямой и от прямой к плоскости и есть платоновская
пропорция в данном случае. Она, таким образом, далеко выходит за пределы как
числовых, так и геометрических измеримых отношений, поскольку переход от
одного пространственного измерения к другим не может совершиться ни от каких
бы то ни было арифметических операций, ни от количественных
пространственных. Переход от одного измерения пространства к другому есть
переход качественный, если не прямо понятийный.
И у Платона, и у пифагорейцев, и у неоплатоников диада (или, как часто у
них говорится, "неопределенная диада") есть принцип становления, в отличие
от нестановящегося и устойчивого бытия, которое они называют "монадой".
Однако становление это не нужно понимать в том отвлеченном смысле, как это
понимается в новейшей философии. У греков диада еще слабо отличается от
телесного или геометрического перехода от одной точки пространства к его
другой точке. Но мало и этого. С понятием диады греки объединяли переход от
одного измерения пространства к другому, т.е. от точки к линии, от линии к
плоскости, к трехмерному телу. Дальнейшие эти свойства трехмерного тела тоже
появлялись в результате применения обычной диады. Поэтому если от
трехмерного тела вообще переходили, например, к теплому или холодному
трехмерному телу, то получение и этого нового свойства тела тоже мыслилось в
результате того становления, которое определялось все тем же принципом
диады. Итак, античную диаду надо понимать не отвлеченно, а вполне
материально, что тоже глубочайшим образом соответствует стихийному
материализму древних.
Следовательно, если в приведенном тексте Платона речь идет о
пропорциональности переходов от одного пространственного измерения к другому
и если измерения эти надо понимать также и в широко качественном смысле, то
эстетический смысл приведенного текста должен свидетельствовать о живой и
как бы одушевленной структуре предмета, в котором все определяется не просто
количественным способом, а в котором единая пропорциональность царит во всех
его проявлениях. Предмет может быть бесконечно разнообразен; но в нем должна
быть некая единая структура, пропорционально охватывающая собою все его
бесконечно разнообразные проявления. Так следует понимать этот трудный и
обычно механически переводимый текст Платона.
Приведенный отрывок содержит, однако, еще одну мысль, содержащую чисто
арифметическое понимание пропорции. Оказывается, когда уже дано то или иное
пространственное измерение (например, прямая), то мы можем в его пределах
находить и более сложную пропорцию. А именно, взявши отрезок прямой, мы
можем выбрать между ее концами такие две точки, которые будут делить весь
отрезок по-разному, но которые содержат единство своего отношения к его
концам. Так, возьмем числа 6, 8, 9, 12. Тут, с одной стороны, в одинаковом
отношении к 6 и 12 находится число 8, так как 8 превосходит 6 на ту же долю
числа 6, на какую долю числа 12 это 8 превосходится числом 12. С другой
стороны, в аналогичном отношении к 6 и 12 находится также и число 9, хотя
это отношение и не адекватно первому. А именно, 9 на столько же единиц
превосходит 6, на сколько само превосходится числом 12, т.е. находится ровно
посредине между ними. Первое отношение 4?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251