ТОП авторов и книг ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ
Модель АПЧ, созданная Андерсоном и
Боуэром, позволяет лучше объяснить эти и другие эффекты,.
которые, как .мы увидим, плохо согласуются с сетевыми мо-
делями. В данном случае модель АПЧ может объяснить яв-
ление типичности или близости как результат происходящего
в ДП процесса поиска (сопоставления). Как вы помните,
отправной точкой процесса сопоставления служит поиск, на-
чинающийся из каждой ячейки ДП, упомянутой во входном
сообщении; цель этого процесса - найти дерево, которое со-
ответствовало бы входному сообщению. Поиск начинается
одновременно с разных ячеек и ведется параллельно; однако
из каждой отдельной ячейки одновременно можно вести по-
иск только по одному пути. А так как обычно от каждой
ячейки ДП идет много путей, предполагается, что среди них
устанавливается некая очередность; она определяет последо-
вательность, в которой производится поиск по разным пу-
тям, идущим от данной ячейки. Наиболее важные пути об-
следуются в первую очередь. Это позволяет модели АПЧ
учесть влияние <типичности> на истинное время реакции, так
как есть определенная зависимость между типичностью и оче-
редностью. Оказывается, чем более типичен данный предста-
витель для данного класса, тем выше вероятность того, что
соединяющие их пути занимают одно из первых мест в спис-
ке очередности. Если допустить, что оценки типичности, или
близости, основываются на отношениях очередности, то эта
модель позволит без труда объяснить причины различий в.
оценках.
Не удивительно, что близость влияет на ВР в задачах по-
проверке истинности утверждений (Smith, 1967; Wilkins,
1971). Чем теснее связаны 5 и Р, тем быстрее проверяется
истинность утверждений типа <некоторое 5 есть Р>. Так, на-
пример, испытуемые проверяют истинность того, что <го-
лубь-птица>, быстрее, чем того, что <курица-птица>.
Удивительно другое: эффекты близости позволяют предска-
зать ситуации, в которых эффект величины класса не будет-
Глава 8
проявляться. Рассмотрим следующий пример (Rips а.. о., 1973).
Класс <.млекопитающие> входит в класс <животные>, так что
класс <животные> больше по своему объему. Однако по
оценкам испытуемых некоторые млекопитающие (например,
<медведь> или <кошка>) более типичны для класса <живот-
ные>, чем для класса <млекопитающие>. И если сравнить
ВР для проверки утверждений <медведь-млекопитающее>
и <медведь-животное>, то окажется, что во втором случае
оно короче. Это расходится с предсказанием о влиянии ве-
личины класса (поскольку класс <животные> более обширен,
ВР при его проверке, казалось бы, должно быть больше), но
соответствует оценкам типичности. Такой результат опять-
таки создает затруднение для модели ОСПЯ (но не для мо-
дели АПЧ, которая позволяет объяснить его на основе оче-
редности при поиске: чем теснее близость между 5 и Р, тем
раньше начнется обследование соответствующих путей и тем
быстрее утверждение может быть проверено).
ТЕОРЕТИКО-МНОЖЕСТВЕННАЯ МОДЕЛЬ ДП
До сих пор мы рассмотрели лишь один тип моделей се-
мантической ДП-сетевые модели. Существуют, однако, мо-
дели иного типа, и мы сейчас рассмотрим одну из них, из-
вестную под названием <теоретикочмножественной> (Meyer,
1970). В основе ее лежит предположение, что семантические
классы представлены в ДП как множества, или совокупно-
сти, элементов информации. Это могут быть множества пред-
ставителей какого-либо класса (например, к классу <птицы>
относятся малиновки, соловьи, воробьи и т. д.). Это могут
быть также множества атрибутов или свойств данного класса
(например, птицы имеют крылья, имеют перья, могут летать
и т. д.). Иными словами, та или иная категория представлена
в ДП в виде некоторого набора информации.
Мейер (Meyer, 1970) использовал теоретико-множествен-
ную модель, чтобы объяснить различия во времени, затра-
чиваемом испытуемыми для проверки утверждений типа <все
5 суть Р> или <некоторые 5 суть Р> (например, <все кам-
ни-рубины> или <некоторые камни-рубины>). Для объ-
яснения данных относительно ВР он предложил двухфазную
модель, описывающую процесс выполнения такой задачи. Со-
гласно этой модели, испытуемый, которому предъявили тако-
го рода утверждение, сначала перебирает названия всех мно-
жеств, которые пересекаются (т. е. перекрываются, имеют
общих членов) с классом Р. Например, в случае утвержде-
ния типа <все 5. суть писатели> испытуемый начнет искать
ДП: структура и семантическая переработка информации
множества, перекрывающиеся с множеством <писатели>. Он
может обнаружить такие множества, как <женщины>, <муж-
чины>, <люди>, <профессора> и т. д., в каждом из них име-
ются члены, которые суть писатели. Если в этих множествах
будут обнаружены элементы класса 5 (будет выявлен факт
пересечения этих множеств с классом S), то первая стадия
завершится установлением соответствия. Если же при поиске
не будет обнаружено соответствия с классом S, то результа-
том первого этапа будет отрицательный ответ.
Если на первом этапе проверки будет обнаружено соот-
ветствие, то это означает, что классы 5 и Р имеют некоторых.
общих членов. Этого было бы достаточно, чтобы убедиться
в истинности утверждения типа <некоторые 5 суть Р>, но
недостаточно для проверки утверждения типа <все 5 суть Р>.
В последнем случае необходимо провести второй этап: срав-
нение всех атрибутов Р с атрибутами 5. Если каждый атри-
бут Р является также одним из атрибутов S, то утверждение
можно признать истинным. Если же нет, то испытуемый дает
отрицательный ответ.
Возьмем конкретный пример.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
Боуэром, позволяет лучше объяснить эти и другие эффекты,.
которые, как .мы увидим, плохо согласуются с сетевыми мо-
делями. В данном случае модель АПЧ может объяснить яв-
ление типичности или близости как результат происходящего
в ДП процесса поиска (сопоставления). Как вы помните,
отправной точкой процесса сопоставления служит поиск, на-
чинающийся из каждой ячейки ДП, упомянутой во входном
сообщении; цель этого процесса - найти дерево, которое со-
ответствовало бы входному сообщению. Поиск начинается
одновременно с разных ячеек и ведется параллельно; однако
из каждой отдельной ячейки одновременно можно вести по-
иск только по одному пути. А так как обычно от каждой
ячейки ДП идет много путей, предполагается, что среди них
устанавливается некая очередность; она определяет последо-
вательность, в которой производится поиск по разным пу-
тям, идущим от данной ячейки. Наиболее важные пути об-
следуются в первую очередь. Это позволяет модели АПЧ
учесть влияние <типичности> на истинное время реакции, так
как есть определенная зависимость между типичностью и оче-
редностью. Оказывается, чем более типичен данный предста-
витель для данного класса, тем выше вероятность того, что
соединяющие их пути занимают одно из первых мест в спис-
ке очередности. Если допустить, что оценки типичности, или
близости, основываются на отношениях очередности, то эта
модель позволит без труда объяснить причины различий в.
оценках.
Не удивительно, что близость влияет на ВР в задачах по-
проверке истинности утверждений (Smith, 1967; Wilkins,
1971). Чем теснее связаны 5 и Р, тем быстрее проверяется
истинность утверждений типа <некоторое 5 есть Р>. Так, на-
пример, испытуемые проверяют истинность того, что <го-
лубь-птица>, быстрее, чем того, что <курица-птица>.
Удивительно другое: эффекты близости позволяют предска-
зать ситуации, в которых эффект величины класса не будет-
Глава 8
проявляться. Рассмотрим следующий пример (Rips а.. о., 1973).
Класс <.млекопитающие> входит в класс <животные>, так что
класс <животные> больше по своему объему. Однако по
оценкам испытуемых некоторые млекопитающие (например,
<медведь> или <кошка>) более типичны для класса <живот-
ные>, чем для класса <млекопитающие>. И если сравнить
ВР для проверки утверждений <медведь-млекопитающее>
и <медведь-животное>, то окажется, что во втором случае
оно короче. Это расходится с предсказанием о влиянии ве-
личины класса (поскольку класс <животные> более обширен,
ВР при его проверке, казалось бы, должно быть больше), но
соответствует оценкам типичности. Такой результат опять-
таки создает затруднение для модели ОСПЯ (но не для мо-
дели АПЧ, которая позволяет объяснить его на основе оче-
редности при поиске: чем теснее близость между 5 и Р, тем
раньше начнется обследование соответствующих путей и тем
быстрее утверждение может быть проверено).
ТЕОРЕТИКО-МНОЖЕСТВЕННАЯ МОДЕЛЬ ДП
До сих пор мы рассмотрели лишь один тип моделей се-
мантической ДП-сетевые модели. Существуют, однако, мо-
дели иного типа, и мы сейчас рассмотрим одну из них, из-
вестную под названием <теоретикочмножественной> (Meyer,
1970). В основе ее лежит предположение, что семантические
классы представлены в ДП как множества, или совокупно-
сти, элементов информации. Это могут быть множества пред-
ставителей какого-либо класса (например, к классу <птицы>
относятся малиновки, соловьи, воробьи и т. д.). Это могут
быть также множества атрибутов или свойств данного класса
(например, птицы имеют крылья, имеют перья, могут летать
и т. д.). Иными словами, та или иная категория представлена
в ДП в виде некоторого набора информации.
Мейер (Meyer, 1970) использовал теоретико-множествен-
ную модель, чтобы объяснить различия во времени, затра-
чиваемом испытуемыми для проверки утверждений типа <все
5 суть Р> или <некоторые 5 суть Р> (например, <все кам-
ни-рубины> или <некоторые камни-рубины>). Для объ-
яснения данных относительно ВР он предложил двухфазную
модель, описывающую процесс выполнения такой задачи. Со-
гласно этой модели, испытуемый, которому предъявили тако-
го рода утверждение, сначала перебирает названия всех мно-
жеств, которые пересекаются (т. е. перекрываются, имеют
общих членов) с классом Р. Например, в случае утвержде-
ния типа <все 5. суть писатели> испытуемый начнет искать
ДП: структура и семантическая переработка информации
множества, перекрывающиеся с множеством <писатели>. Он
может обнаружить такие множества, как <женщины>, <муж-
чины>, <люди>, <профессора> и т. д., в каждом из них име-
ются члены, которые суть писатели. Если в этих множествах
будут обнаружены элементы класса 5 (будет выявлен факт
пересечения этих множеств с классом S), то первая стадия
завершится установлением соответствия. Если же при поиске
не будет обнаружено соответствия с классом S, то результа-
том первого этапа будет отрицательный ответ.
Если на первом этапе проверки будет обнаружено соот-
ветствие, то это означает, что классы 5 и Р имеют некоторых.
общих членов. Этого было бы достаточно, чтобы убедиться
в истинности утверждения типа <некоторые 5 суть Р>, но
недостаточно для проверки утверждения типа <все 5 суть Р>.
В последнем случае необходимо провести второй этап: срав-
нение всех атрибутов Р с атрибутами 5. Если каждый атри-
бут Р является также одним из атрибутов S, то утверждение
можно признать истинным. Если же нет, то испытуемый дает
отрицательный ответ.
Возьмем конкретный пример.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127