ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


Для тех, кто интересуется статистикой и хотел бы
расширить свои познания в области компьютерной
обработки решеток, мы включили в эту главу общее
обсуждение этой проблемы, в значительной степени
заимствованное из работы Уилсон (222), где она подчер-
кивает, что существуют две большие группы методов
анализа ранговых и оценочных решеток.
Метрический факторный анализ l
Главное преимущество методов этого типа заключа-
ется в их доступности: в Великобритании и США они
включены в коммерческие статистические пакеты прог-
рамм (например, СПСН, или Статистический пакет
программ для социальных наук, 154). СПСН включает в
себя пять различных методов факторного анализа.
Анализ методом главных компонент (МГК). Он не
накладывает ограничений на анализируемые данные
(чего нельзя сказать про другие четыре метода). По
существу, это анализ общей дисперсии данных, позво-
ляющий обрабатывать столбцы и строки раздельно.
Получаемые главные компоненты можно вращать при
помощи алгоритмов, основанных на одном из трех
критериев (варимакс, эквимакс и облимакс). В итоге
обработки строится факторное пространство.
Более подробные и специальные сведения о различных алгорит-
мах факторного анализа читатель может найти, например, в книге
Харман Г. Современный факторный анализ.-М.: Статистика, 1972.-
Прим. ред.
Различные типы <вращения> факторов. Методы <вращения>
разработаны для получения более простой и интерпретируемой
факторной модели. В основе каждого метода лежит некоторый
критерий, который оптимизируется в процессе поиска решения.
Например, метод варимакс-вращения построен на критерии максими-
зации дисперсии факторных нагрузок на каждый фактор. В результа-
Остальные методы базируются на общей факторной
модели, предполагающей, что каждая из факторизу-
емых переменных имеет как общую, так и специфиче-
скую компоненту, а интерес представляет только общая
дисперсия.
Анализ методом главных факторов (МГФ)-
наиболее широко используемый метод. Уилсон указы-
вает, что он представляет собой разновидность более
общего факторного анализа, рекомендуемого Руммелом
(176), ему не присущи те допущения, которые лежат в
основе общего факторного анализа, и он обладает
дополнительным преимуществом: позволяет проверить
лежащее в основе традиционной факторной модели
предположение о том, что значение имеет только
общая часть дисперсии конструктов. Одним из резуль-
татов обработки является матрица ковариаций, обрат-
ная матрице факторного отображения. Внедиагональ-
ные элементы этой матрицы имеют значения, близкие к
нулю, что увеличивает доверие исследователя к валид-
ности окончательного решения, так как подтверждает,
что в большую часть общей дисперсии вносят вклад все
конструкты. Уилсон считает необходимым отметить,
что решения, получаемые при помощи факторного
анализа, как правило, обладают размерностью N/2. Это
означает, что факторов примерно в два раза меньше,
чем переменных. Если оказывается, что факторов
слишком много для экономичного описания данных, в
конечном решении число факторов можно уменьшить, а
затем подвергнуть их вращению.
В основе двух оставшихся методов лежат как
предположения, имплицитно присущие общей фактор-
ной модели, так и некоторые дополнительные допуще-
ния.
В основе Рэо-анализа лежит предположение о том,
что факторизуемые переменные (конструкты) охваты-
вают всю совокупность переменных, а элементы пред-
ставляют собой выборку из общей популяции элемен-
тов.
При проведении же Альфа-анализа предполагается,
что включенные элементы представляют собой целую
популяцию, а переменные-выборку из совокупности
переменных. В этом случае решение можно распростра-
те этого метода ищется решение, при котором каждая переменная
имеет максимальную нагрузку по одному из варимакс-факторов и
минимальные нагрузки по другим факторам. Этот метод позволяет
также получить ортогональное решение (некоррелирующие между
собой факторы). Другие методы, как, например, облимакс, позволяют
получить косоугольное решение, то есть решение, состоящее из
коррелирующих факторов.- Прим. ред.
нить на всю совокупность конструктов. Уилсон утвер-
ждает, что выбор техники должен определяться целью
исследования. Обсуждение описанных выше методов
можно найти также в работах Ная и его коллег (154).
Уилсон делает еще два замечания относительно
программ факторного анализа, включенных в СПСН.
Во-первых, они позволяют проводить факторный ана-
лиз как матрицы корреляций, так и матрицы ковари-
аций. Обе матрицы строятся на основе <сырых> дан-
ных, однако факторные решения, получаемые методом
главных компонент и методом главных факторов, отли-
чаются друг от друга. Этого нельзя сказать о Рэо- и
Альфа-анализах, а также о модификации факторного
анализа Харриса (82). Получаемые при помощи этих
трех методов решения для матриц корреляций и ковари-
аций пропорциональны и, следовательно, значимо кор-
релируют между собой, что, по мнению Уилсон, снима-
ет проблему, с которой сталкиваются исследователи
при использовании как метода главных компонент, так
и метода главных факторов,-какую матрицу выбрать
для факторизации.
Второе замечание Уилсон касается отношения числа
элементов к числу факторизуемых конструктов и свя-
занной с этим проблемы репрезентативности конструк-
тов. В целом можно сказать, что при факторизации
матрицы корреляций надежность решения в некоторой
степени зависит от стабильности коэффициентов корре-
ляции.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики