ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


- Сговориться, конечно, можно... Но кто даст гарантию, что мы не
обманываем? Сделка в принципе возможны, однако в Игре как-то не
практикуются. Все-таки, что ни говорите, а Компьютер беспристрастен. В то
время как опытный лгун - это великолепный манипулятор на решетке и...
- Бросьте, давайте рискнем, - весело сказал Нох. - Это все теория.
Всякие хитрости и уловки всегда существовали и будут существовать в
галактике и даже на маленьких планетах.
- Ладно, уговорили, - улыбнулся Стайл. Он дотронулся до цифры "2".
Реакция чужеземца, как обычно, была молниеносной. Почти одновременно с
цифрой "2" на табло выскочила буква "В". Итак, оппоненты доверились друг
другу, как верят уважающие друг друга соперники, и это сильно упрощало
дело.
Соперники прошли в пустую маленькую комнату с голыми стенами.
- Игроки выбирают первого отвечающего, - раздался откуда-то из стены
голос Компьютера. - Ответ дается в течение десяти минут, затем
предлагается загадка сопернику. Если в течение десяти минут загадка не
будет разгадана, ответ дается автором, затем автор сам отвечает на вопрос
оппонента в рамках установленного временного лимита. Первый, кто выполнит
эти условия, - победитель. Компьютер является арбитром в технических
вопросах.
- Мне очень любезно объяснили условия состязания, - сказал Нох, - я
ценю это и уступаю вам первый ход.
Строго говоря, для соперников было безразлично, кто начнет. Только
ответ, отсутствие ответа или последующая защита засчитывались. Но Стайл
был рад, что так случилось, по психологическим причинам. У него имелось
приличное количество интересных загадок-головоломок, и он хотел прощупать
Ноха, выяснить, из какого теста сотворен мозг чужеземца.
- Представьте себе три равных отрезка, - осторожно начал Стайл. - Все
отрезки прямые. Постройте из них треугольник. Это совсем нетрудно.
Построили? Теперь представьте себе еще два точно таких же отрезка. С их
помощью постройте еще один треугольник, используя сторону первого. А
теперь ответьте: сможете ли вы составить четыре равносторонних
треугольника из шести равных отрезков?
Нох задумался.
- Интересная задачка. А можно составить из сегментов этих отрезков
два треугольника, наложить их один на другой, а потом разделить эту фигуру
биссектрисой, которую сделаем из такого же отрезка?
- Нет, нельзя. Каждый отрезок должен представлять собой одну из
сторон равностороннего треугольника, - сделал отрицательный жест Стайл, но
почувствовал звон в ушах, поняв, что способность схватывать у чужеземца
поистине феноменальна. Ведь, по сути, Нох уже создал проект, который
сформирует четыре равносторонних треугольника из шести отрезков. Это
существо было совсем не глупо.
- Можно ли скрестить отрезки в форме звезды и...
- Нет, - сказал Стайл. О, как быстро чужеземец все понимал!
Щупальца на голове Ноха на мгновение напряглись. Затем он спросил:
- Можно ли использовать другое измерение?
Есть!
- Можно, - мужественно кивнул Стайл.
- В таком случае из угла данного треугольника поднимаем в высоту
отрезки. Вверху они сходятся в точку, и получается пирамида. Каждая
сторона пирамиды и будет представлять собой равносторонний треугольник.
- Вы угадали, - признался Стайл. - Теперь ваша очередь.
- Очень приятная игра. Мне понравилось... э... про треугольники. Вы
согласны, что сумма углов треугольника есть полукруг?
- Сто восемьдесят градусов, - согласился Стайл.
- А теперь представим себе треугольник, сумма углов которого равна
трем четвертям круга.
- Это... - решительно начал Стайл, но прикусил язык, когда слово
"невозможно" уже готово было сорваться с его уст. Очевидно, у Ноха что-то
на уме. И все же треугольник никак не может иметь сумму углов двести
семьдесят градусов. Сумма углов треугольника сто восемьдесят градусов. Это
часть определения любого треугольника. Угол может быть какой угодно,
однако в сумме все углы дают сто восемьдесят, иначе треугольник не
получается. Если даже один угол составляет 179 градусов, то сумма двух
других - ровно 1 градус... Но, может, речь идет о наложении треугольников?
Может, один из углов - это, допустим, часть другого треугольника...
Похоже, все-таки дело не в этом. Но попробуем!
- Можно ли несколько треугольников наложить друг на друга и...
- Никогда в жизни! - отрезал Нох.
Это уже слишком. Стайл стал ходить по комнате, представляя себе
треугольники всех видов и мастей. Никому неизвестно, какие они были и как
он составлял их. Важно лишь то, что ни один из них не имел сумму углов
больше, чем сто восемьдесят градусов.
Может, чужеземец имел в виду вовсе не треугольник в человеческом
смысле слова?
- В этой фигуре больше, чем три угла?
- Никогда в жизни!
Опять промашка. Черт возьми, это же невозможно. Но все-таки
существует логика, исходя из которой - возможно, иначе Нох не предложил бы
данной задачи. Уж кому-кому, а Стайлу не раз приходилось сталкиваться с
ситуациями, когда невозможное становилось возможным...
Ну, допустим, мы будем-раздвигать стороны треугольника, увеличивая
таким образом его углы... Но тогда линии будут искривлены, что не
допускается по определению треугольника... А если треугольник нарисован на
кривом листе бумаги! Какой это лист? Ага! искривленная поверхность. Нох не
оговорил, что поверхность обязательно должна быть прямая. Треугольник,
начерченный на искривленной поверхности.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики