ТОП авторов и книг ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ
так,
например, второстепенное значение слова, почти не оставляющее следа в нашем
сознании, может все же существенно повлиять на содержание предложения, когда
это слово произнесено. Тот факт, что любое слово может вызвать в нашем
мышлении многие, только наполовину осознаваемые движения, может быть
использован для того, чтобы выразить с помощью языка определенные стороны
действительности более отчетливо, чем это было бы возможно с помощью
логической схемы. Поэтому поэты часто выступали против такого
преувеличенного подчеркивания логических схем в языке и мышлении, могущего
привести к тому, что язык станет не пригоден для той цели, для какой он был
первоначально создан. Здесь можно, например, напомнить известные слова, с
которыми Мефистофель в "Фаусте" Гете обращается к ученику:
Цените время: дни уходят невозвратно!
Но наш порядок даст привычку вам
Распределять занятья аккуратно.
А потому, мой друг, на первый раз,
По мне, полезно было бы для вас
Курс логики пройти в ее границах
Начнут сейчас дрессировать ваш ум,
Держа его в ежовых рукавицах,
Чтоб тихо он без лишних дум
И без пустого нетерпенья
Всползал по лестнице мышленья,
Чтоб вкривь и вкось, по всем путям,
Он не метался там и сям.
Затем внушат вам, ради той же цели,
Что в нашей жизни всюду, даже в том,
Что прежде сразу делать вы умели, --
Как, например, питье, еда, --
Нужна команда "раз, два, три" всегда.
Так фабрикуют мысли. С этим можно
Сравнить хоть ткацкий, например, станок.
В нем управленье нитью сложно:
То вниз, то вверх снует челнок,
Незримо нити в ткань сольются;
Один толчок -- сто петель вьются.
Подобно этому, дружок,
И вас философ поучает!
"Вот это -- так и это -- так,
А потому и это -- так,
И если первая причина исчезает,
То и второму не бывать никак".
Ученики пред ним благоговеют,
Но ткань соткать из нитей не сумеют
Иль вот: живой предмет желая изучить,
Чтоб ясное о нем познанье получить, --
Ученый прежде душу изгоняет
Затем предмет на части расчленяет
И видит их, да жаль: духовная их связь
Тем временем исчезла, унеслась! 14
Это место содержит достойное восхищения описание структуры языка и
обоснованную критику узости обычных логических схем.
С другой стороны, наука ведь должна основываться на языке как на
единственном средстве передачи сообщений, и поэтому там, где проблема
однозначности имеет большую важность, логические схемы должны играть свою
роль. Специфическая трудность в этом пункте может быть, пожалуй, описана
следующим образом. В естествознании мы пытаемся единичное вывести из общего:
единичное явление должно быть понято как следствие простых общих законов.
Эти общие законы, когда они формулируются в языке, могут содержать только
некоторые немногие понятия, ибо, в противном случае, законы были бы не
простыми и не всеобщими. Из этих понятий должно быть выведено далее
бесконечное многообразие возможных явлений, и при этом не только качественно
и приближенно, но и с огромной степенью точности в отношении всякой детали.
Становится очевидным, что понятия обыденного языка, определенные, как
правило, столь неточно и нечетко, никогда не позволили бы сделать такой
вывод. Если из заданных посылок следует цепь заключений, то общее число
возможных членов в цепи зависит от точности посылок. Поэтому в
естествознании основные понятия общих законов должны быть определены с
предельной степенью точности, а это возможно только с помощью математической
абстракции.
Подобное же положение может иметь место и в других науках -- в них
также могут стать необходимыми точные определения, например в юриспруденции.
Но здесь общее число членов в цепи заключений никогда не бывает очень
большим; поэтому здесь нет необходимости в совершенной точности, и в
большинстве случаев мало-мальски точные определения оказываются исчерпывающе
сформулированными с помощью понятий обыденного языка.
В теоретической физике мы пытаемся понять группы явлений, вводя
математические символы, которые могут быть поставлены в соответствие
некоторым фактам, а именно результатам измерений. Для символов мы находим
имена, которые делают ясной их связь с измерением. Этим способом символы
связываются, следовательно, с обыденным языком. Но затем символы связываются
между собой
с помощью строгой системы определений и аксиом, и в конце концов законы
природы приобретают вид уравнений между символами. Бесконечное многообразие
решений этих уравнений соответствует тогда бесконечному многообразию
единичных явлений, возможных в данной области природы. Таким образом,
математическая схема отображает рассматриваемую группу явлений в той мере, в
которой соблюдаются соотношения между символами и измерениями. Эти
соотношения позволяют также затем выразить сами законы природы в понятиях
обыденного языка, так как наши эксперименты, состоящие из действий и
измерений, всегда могут быть описаны этим языком.
Конечно, в процессе расширения наших научных знаний увеличивается и
сфера применимости языка. Вводятся новые понятия, а старые начинают
употребляться в новых областях в ином смысле, чем при их употреблении в
обычном языке. Такие слова, как энергия, электричество, энтропия,
представляют собой хорошо известные примеры.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
например, второстепенное значение слова, почти не оставляющее следа в нашем
сознании, может все же существенно повлиять на содержание предложения, когда
это слово произнесено. Тот факт, что любое слово может вызвать в нашем
мышлении многие, только наполовину осознаваемые движения, может быть
использован для того, чтобы выразить с помощью языка определенные стороны
действительности более отчетливо, чем это было бы возможно с помощью
логической схемы. Поэтому поэты часто выступали против такого
преувеличенного подчеркивания логических схем в языке и мышлении, могущего
привести к тому, что язык станет не пригоден для той цели, для какой он был
первоначально создан. Здесь можно, например, напомнить известные слова, с
которыми Мефистофель в "Фаусте" Гете обращается к ученику:
Цените время: дни уходят невозвратно!
Но наш порядок даст привычку вам
Распределять занятья аккуратно.
А потому, мой друг, на первый раз,
По мне, полезно было бы для вас
Курс логики пройти в ее границах
Начнут сейчас дрессировать ваш ум,
Держа его в ежовых рукавицах,
Чтоб тихо он без лишних дум
И без пустого нетерпенья
Всползал по лестнице мышленья,
Чтоб вкривь и вкось, по всем путям,
Он не метался там и сям.
Затем внушат вам, ради той же цели,
Что в нашей жизни всюду, даже в том,
Что прежде сразу делать вы умели, --
Как, например, питье, еда, --
Нужна команда "раз, два, три" всегда.
Так фабрикуют мысли. С этим можно
Сравнить хоть ткацкий, например, станок.
В нем управленье нитью сложно:
То вниз, то вверх снует челнок,
Незримо нити в ткань сольются;
Один толчок -- сто петель вьются.
Подобно этому, дружок,
И вас философ поучает!
"Вот это -- так и это -- так,
А потому и это -- так,
И если первая причина исчезает,
То и второму не бывать никак".
Ученики пред ним благоговеют,
Но ткань соткать из нитей не сумеют
Иль вот: живой предмет желая изучить,
Чтоб ясное о нем познанье получить, --
Ученый прежде душу изгоняет
Затем предмет на части расчленяет
И видит их, да жаль: духовная их связь
Тем временем исчезла, унеслась! 14
Это место содержит достойное восхищения описание структуры языка и
обоснованную критику узости обычных логических схем.
С другой стороны, наука ведь должна основываться на языке как на
единственном средстве передачи сообщений, и поэтому там, где проблема
однозначности имеет большую важность, логические схемы должны играть свою
роль. Специфическая трудность в этом пункте может быть, пожалуй, описана
следующим образом. В естествознании мы пытаемся единичное вывести из общего:
единичное явление должно быть понято как следствие простых общих законов.
Эти общие законы, когда они формулируются в языке, могут содержать только
некоторые немногие понятия, ибо, в противном случае, законы были бы не
простыми и не всеобщими. Из этих понятий должно быть выведено далее
бесконечное многообразие возможных явлений, и при этом не только качественно
и приближенно, но и с огромной степенью точности в отношении всякой детали.
Становится очевидным, что понятия обыденного языка, определенные, как
правило, столь неточно и нечетко, никогда не позволили бы сделать такой
вывод. Если из заданных посылок следует цепь заключений, то общее число
возможных членов в цепи зависит от точности посылок. Поэтому в
естествознании основные понятия общих законов должны быть определены с
предельной степенью точности, а это возможно только с помощью математической
абстракции.
Подобное же положение может иметь место и в других науках -- в них
также могут стать необходимыми точные определения, например в юриспруденции.
Но здесь общее число членов в цепи заключений никогда не бывает очень
большим; поэтому здесь нет необходимости в совершенной точности, и в
большинстве случаев мало-мальски точные определения оказываются исчерпывающе
сформулированными с помощью понятий обыденного языка.
В теоретической физике мы пытаемся понять группы явлений, вводя
математические символы, которые могут быть поставлены в соответствие
некоторым фактам, а именно результатам измерений. Для символов мы находим
имена, которые делают ясной их связь с измерением. Этим способом символы
связываются, следовательно, с обыденным языком. Но затем символы связываются
между собой
с помощью строгой системы определений и аксиом, и в конце концов законы
природы приобретают вид уравнений между символами. Бесконечное многообразие
решений этих уравнений соответствует тогда бесконечному многообразию
единичных явлений, возможных в данной области природы. Таким образом,
математическая схема отображает рассматриваемую группу явлений в той мере, в
которой соблюдаются соотношения между символами и измерениями. Эти
соотношения позволяют также затем выразить сами законы природы в понятиях
обыденного языка, так как наши эксперименты, состоящие из действий и
измерений, всегда могут быть описаны этим языком.
Конечно, в процессе расширения наших научных знаний увеличивается и
сфера применимости языка. Вводятся новые понятия, а старые начинают
употребляться в новых областях в ином смысле, чем при их употреблении в
обычном языке. Такие слова, как энергия, электричество, энтропия,
представляют собой хорошо известные примеры.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67