ТОП авторов и книг ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ
Поэтому мы не
будем останавливаться на его описании. Здесь важно только еще раз подчеркнуть,
что, какое бы строение ни имели высокомолекулярные соединения, какова бы ни
была их структура, мы всегда сможем определить в них невидимые фн. ячейки и
занимающие их реальные фщ. единицы различных подуровней, то есть различные
атомы, молекулы и т.д. Выпадение фщ. единицы из той или иной фн. ячейки или
заполнение ее несоответствующей ей фщ. единицей в любом случае приведет к
нарушению структуры данной системы, либо изменению ее фн. свойств.
В связи со сложностью их структурного построения и наличия множества связей
все высокомолекулярные соединения существуют лишь в конденсированном состоянии
- твердом или жидком. Однако, по фазовому состоянию они больше соответствуют
структуре жидкости, которая вследствие высокой вязкости представляется нам в
большинстве случаев твердым телом.
Особую подгруппу системных образований подуровня Е составляют комплексные
соединения, очень разнообразные как по строению, так и по фн. свойствам.
Однако в развитии материальной субстанции на рассматриваемом оргуровне они
играют более второстепенную, или скорее, вспомогательную роль. В дальнейшем,
на уровнях более высокой организации, их роль возрастает. В частности, такие
важнейшие природные соединения, определяющие Жизнь на Земле, как гемоглобин и
хлорофилл, относятся к внутрикомплексным соединениям. Структура их ядер
одинакова, только у хлорофилла фн. ячейку комплексообразователя занимает Mg2+,
а у гемоглобина Fe2+. По двум вакантным координационным местам в свободные фн.
ячейки к этим комплексообразователям легко присоединяются еще две молекулы
других веществ. Так, в гемоглобине по одну сторону плоскости хелата железом
связана молекула белка глобина, а по другую сторону - молекула кислорода,
благодаря чему это соединение и является переносчиком кислорода.
Функциональное развитие Материи в подуровне Е и появление новых структурных
образований происходило и происходит за счет разнообразного превращения
веществ путем перераспределения электронных плотностей между составляющими их
атомами, что приводит к разрыву старых и образованию новых внутриструктурных
связей. Однако достаточно вспомнить такие химические превращения, как взрыв
пороха и ржавление железа, чтобы утверждать, что различные структурные
изменения протекают с самыми различными скоростями - от крайне высоких до
очень низких. Причиной этому являются специфические особенности каждого
перестроения, зависящие от сбалансированного распространения новообразованной
структуры () в пространстве-времени () при данных условиях, а также
качественной характеристики участвующих в реакции фщ. единиц.
Интервал времени протекания различных химических реакций на единицу
пространства колеблется от долей секунды до минут, часов, дней. Известны
реакции, требующие для своего протекания несколько лет, десятилетий и еще
более длительных отрезков времени. Если реакция протекает в гомогенной
системе, то она идет во всем объеме этой системы. В результате реакции
возникает, как правило, гетерогенная система:
H2SO4 + Na2S2O3 = Na2SO4 + H2O + SO2 + S
Примерами гомогенной системы может служить любая однофазовая смесь, жидкий
раствор различных веществ. Если реакция протекает между веществами,
образующими гетерогенную систему, то она может идти только на поверхности
раздела фаз, образующих систему. Так, например, растворение металла в кислоте
Fe + 2HCl = FeCl2 + H2 может протекать только на поверхности металла, потому
что только здесь соприкасаются друг с другом оба реагирующих вещества.
Результатом реакции является опять гетерогенная система, которая в условиях
отсутствия замкнутости может путем освобождения от одной из своих фаз стать
гомогенной системой. В качестве примеров гетерогенных систем можно привести
следующие системы: вода со льдом, насыщенный раствор с осадком, сера в
атмосфере воздуха. На более высоких ступенях Развития Материи примерами
гомогенных систем могут служить заросли функционально однотипных растений
(лес, луговая трава, фруктовые сады), объединенные группы функционально
однотипных животных (стадо овец, стая волков или обезьян). Гетерогенными
системами в этом случае будут: табун лошадей на лугу, бригада лесорубов в
лесу, производственные предприятия и т.п. Изучением условий, влияющих на
скорости химических реакций, занимается химическая кинетика. На более высоких
ступенях Развития Материи эти вопросы должны быть отнесены соответственно к
биологической и социальной кинетике.
К важнейшим факторам, влияющим на скорости реакций, протекающих в системах
уровня Е, относятся следующие: функциональные особенности реагирующих веществ,
их концентрации, температура, присутствие в системе катализаторов. Скорости
некоторых гетерогенных реакций зависят также от интенсивности движения
жидкости или газа около поверхности, на которой происходит реакция. При
вступлении в реакцию фщ. единиц двух различных веществ образуются фщ. единицы
третьего, четвертого и т.д. вещества, которые заполняют соответствующие им фн.
ячейки, хотя теоретически процесс представляется в обратном порядке: вначале
появляется невидимая фн. ячейка В нового качества, затем происходит сближение
явных фщ. единиц а и б и образование новой фщ. единицы в, которая заполняет
фн.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
будем останавливаться на его описании. Здесь важно только еще раз подчеркнуть,
что, какое бы строение ни имели высокомолекулярные соединения, какова бы ни
была их структура, мы всегда сможем определить в них невидимые фн. ячейки и
занимающие их реальные фщ. единицы различных подуровней, то есть различные
атомы, молекулы и т.д. Выпадение фщ. единицы из той или иной фн. ячейки или
заполнение ее несоответствующей ей фщ. единицей в любом случае приведет к
нарушению структуры данной системы, либо изменению ее фн. свойств.
В связи со сложностью их структурного построения и наличия множества связей
все высокомолекулярные соединения существуют лишь в конденсированном состоянии
- твердом или жидком. Однако, по фазовому состоянию они больше соответствуют
структуре жидкости, которая вследствие высокой вязкости представляется нам в
большинстве случаев твердым телом.
Особую подгруппу системных образований подуровня Е составляют комплексные
соединения, очень разнообразные как по строению, так и по фн. свойствам.
Однако в развитии материальной субстанции на рассматриваемом оргуровне они
играют более второстепенную, или скорее, вспомогательную роль. В дальнейшем,
на уровнях более высокой организации, их роль возрастает. В частности, такие
важнейшие природные соединения, определяющие Жизнь на Земле, как гемоглобин и
хлорофилл, относятся к внутрикомплексным соединениям. Структура их ядер
одинакова, только у хлорофилла фн. ячейку комплексообразователя занимает Mg2+,
а у гемоглобина Fe2+. По двум вакантным координационным местам в свободные фн.
ячейки к этим комплексообразователям легко присоединяются еще две молекулы
других веществ. Так, в гемоглобине по одну сторону плоскости хелата железом
связана молекула белка глобина, а по другую сторону - молекула кислорода,
благодаря чему это соединение и является переносчиком кислорода.
Функциональное развитие Материи в подуровне Е и появление новых структурных
образований происходило и происходит за счет разнообразного превращения
веществ путем перераспределения электронных плотностей между составляющими их
атомами, что приводит к разрыву старых и образованию новых внутриструктурных
связей. Однако достаточно вспомнить такие химические превращения, как взрыв
пороха и ржавление железа, чтобы утверждать, что различные структурные
изменения протекают с самыми различными скоростями - от крайне высоких до
очень низких. Причиной этому являются специфические особенности каждого
перестроения, зависящие от сбалансированного распространения новообразованной
структуры () в пространстве-времени () при данных условиях, а также
качественной характеристики участвующих в реакции фщ. единиц.
Интервал времени протекания различных химических реакций на единицу
пространства колеблется от долей секунды до минут, часов, дней. Известны
реакции, требующие для своего протекания несколько лет, десятилетий и еще
более длительных отрезков времени. Если реакция протекает в гомогенной
системе, то она идет во всем объеме этой системы. В результате реакции
возникает, как правило, гетерогенная система:
H2SO4 + Na2S2O3 = Na2SO4 + H2O + SO2 + S
Примерами гомогенной системы может служить любая однофазовая смесь, жидкий
раствор различных веществ. Если реакция протекает между веществами,
образующими гетерогенную систему, то она может идти только на поверхности
раздела фаз, образующих систему. Так, например, растворение металла в кислоте
Fe + 2HCl = FeCl2 + H2 может протекать только на поверхности металла, потому
что только здесь соприкасаются друг с другом оба реагирующих вещества.
Результатом реакции является опять гетерогенная система, которая в условиях
отсутствия замкнутости может путем освобождения от одной из своих фаз стать
гомогенной системой. В качестве примеров гетерогенных систем можно привести
следующие системы: вода со льдом, насыщенный раствор с осадком, сера в
атмосфере воздуха. На более высоких ступенях Развития Материи примерами
гомогенных систем могут служить заросли функционально однотипных растений
(лес, луговая трава, фруктовые сады), объединенные группы функционально
однотипных животных (стадо овец, стая волков или обезьян). Гетерогенными
системами в этом случае будут: табун лошадей на лугу, бригада лесорубов в
лесу, производственные предприятия и т.п. Изучением условий, влияющих на
скорости химических реакций, занимается химическая кинетика. На более высоких
ступенях Развития Материи эти вопросы должны быть отнесены соответственно к
биологической и социальной кинетике.
К важнейшим факторам, влияющим на скорости реакций, протекающих в системах
уровня Е, относятся следующие: функциональные особенности реагирующих веществ,
их концентрации, температура, присутствие в системе катализаторов. Скорости
некоторых гетерогенных реакций зависят также от интенсивности движения
жидкости или газа около поверхности, на которой происходит реакция. При
вступлении в реакцию фщ. единиц двух различных веществ образуются фщ. единицы
третьего, четвертого и т.д. вещества, которые заполняют соответствующие им фн.
ячейки, хотя теоретически процесс представляется в обратном порядке: вначале
появляется невидимая фн. ячейка В нового качества, затем происходит сближение
явных фщ. единиц а и б и образование новой фщ. единицы в, которая заполняет
фн.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84