ТОП авторов и книг ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ
Девочке же для этого потребовалась моя помощь, и я научил её находить число перестановок самым простым способом. 4 – четвёртое по счёту число натурального ряда. Чтобы узнать, сколько различных пересадок могут сделать четыре музыканта, надо перемножить числа 1, 2, 3, 4, и получится как раз двадцать четыре.
После этого девочка… виноват, Главный секретарь операции «Пуся» открыла свой блокнот, а заодно и конференцию, потому что ПРОМОККМ-4 удалился на заслуженный отдых, и в нашем распоряжении оказалось пятнадцать минут тишины.
Сначала мы освежили в памяти список примет: 1) Все цифры в номере разные. 2) В номере нет нулей. 3) Номер чётный. 4) Номер делится на 11, причём сумма цифр, стоящих на нечётных местах, равна сумме цифр, стоящих на чётных. 5) Последние три цифры номера – последовательно возрастающие. И наконец 6) Значность номера – число совершенное и в то же время треугольное.
Окинув намётанным глазом это обширное хозяйство, я сразу сообразил, что самая важная примета – шестая, последняя, поскольку касается она значности числа. Выходит, с неё и надо начинать. Но прежде я напомнил участникам конференции об одной особенности совершенных чисел. Они растут как на дрожжах! Если первое из них – 6 –число однозначное, второе – 28 – двузначное, то третье – 496 – уже трёхзначное, а последнее из известных совершенных чисел записывается более чем шестью тысячами знаков!
Совершенно ясно, что лотерейный номер не может быть таким длинным. Речь, стало быть, может идти только о двух первых совершенных числах, которые, кстати, оба треугольные. Но второе из них – 28 – придётся отмести. Почему? Да потому, что в числе, состоящем из двадцати восьми цифр, какие-то непременно повторяются. А это противоречит первой примете: все цифры в номере разные. Остаётся число 6. И стало быть, номер – шестизначный. Вот и всё, что мы можем пока извлечь из наших многочисленных признаков.
– Негусто, – вздохнул Главный те рятель, уныло допивая остывший кофе.
– Но и не так уж мало, – бодро возразил я. – Всё-таки некоторые ассоциации привели нас к существенным результатам. И потому – двинемся за новыми!
Двинуться, однако, не удалось, потому что в это время к нам подошёл тот самый человек, который расшифровал название ансамбля.
– Извините великодушно, – сказал он, – у вас такая удивительная собака! Вот я и подумал, что вы, должно быть, тоже любите математику…
– Конечно, любим! А иногда и знаем, – сказала девочка, лукаво взглянув на меня.
– Очень, очень приятно! – обрадовался незнакомец. – Недаром я сразу почувствовал, что здесь мне помогут. Видите ли, я дрессировщик. Выступаю с группой обезьян. Недавно я выписал для них бананы. Мои обезьяны без бананов не могут, и я всегда делаю большие запасы. На сей раз поставщик оказался шутником. Он заявил, что числа отправленных бананов не помнит. Знает лишь, что оно было наименьшим из возможных, оканчивается четвёркой, и что эта четвёрка, будучи переставлена в начало числа, увеличит его вчетверо. Так вот, если я отгадаю, сколько штук бананов отправлено, он обязуется посылать мне каждый месяц столько же, и мои обезьяны будут обеспечены бананами до скончания века. Не поможете ли мне узнать, что это за число?
– С величайшим удовольствием! – отвечал я. – Находить числа – моя святая обязанность. Правда, ваш случай не из лёгких. Но у меня есть один приём, и он нас выручит. Итак, мы ищем число с четвёркой на конце, и эта четвёрка, очутившись в начале числа, увеличит его вчетверо. Так узнаем сперва зто учетверённое число. Попробуем неизвестное нам число отправленных бананов умножить на 4. «Как?! – воскликнете вы. – Как же это возможно? Ведь оно неизвестное!» Да, отвечу я, но не совсем. У него есть кончик – четвёрка. Ухватимся за этот кончик и попробуем вытащить всё число. Для начала умножим четвёрку на 4, чтобы получить последнюю цифру учетверённого числа. 4x4=16. Вот вам и число единиц в новом числе: это 6. Причём в уме у нас остаётся единица, которая перейдёт в следующий разряд. А теперь… Теперь вступает в силу мой приём. Умножим последнюю цифру учетверённого числа 6 на 4, не забыв прибавить к произведению единицу. Получим 25: 6x4=24; 24+1=25. Вот у нас появилась и вторая цифра с конца – 5, при этом 2 остаётся в уме. Снова умножаем 5 на 4 и прибавляем к произведению двойку. Получаем 22: 5x4=20; 20+2=22. Вот вам и третья цифра с конца – 2, а два придерживаем в уме. Снова умножаем 2 на 4, прибавляем двойку и получаем 10. Теперь у нас уже есть четвёртая цифра с конца – 0, да единица в уме. Умножаем 0 на 4, затем прибавляем к произведению единицу и получаем 1: 0x4=0; 0+1=1. Это уже пятая цифра с конца. И наконец, умножив 1 на 4, получаем шестую с конца цифру – 4. Так, шаг за шагом, мы вытащили из неизвестности учетверённое число бананов 410256. Остаётся разделить его на четыре, чтобы найти искомое. Но делать это незачем. Ведь по условию, вернув четвёрку в конец числа, мы его сделаем вчетверо меньше. И, значит, число это – 102564. На всякий случай проверим: умножим 102564 на 4 и получим… 410256. Ошибки нет. Число найдено. И довольно-таки солидное число. Похоже, обезьяны ваши с голода не умрут…
Дрессировщик был вне себя от радости. Он превозносил и меня, и мой способ, и щедрость своего поставщика, который собирается заплатить такой дорогой ценой за решение задачи.
Но я сказал, что поставщик его оказался не только щедрым, но и милосердным. Ведь если бы в условии задачи не было сказано, что надо найти наименьшее из возможных чисел, так пришлось бы нам вычислять число посланных бананов до бесконечности. Потому что 102564 – это период бесконечного целого периодического числа. И, продолжив наше умножение тем же способом, мы снова и снова получим те же цифры, то же число.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
После этого девочка… виноват, Главный секретарь операции «Пуся» открыла свой блокнот, а заодно и конференцию, потому что ПРОМОККМ-4 удалился на заслуженный отдых, и в нашем распоряжении оказалось пятнадцать минут тишины.
Сначала мы освежили в памяти список примет: 1) Все цифры в номере разные. 2) В номере нет нулей. 3) Номер чётный. 4) Номер делится на 11, причём сумма цифр, стоящих на нечётных местах, равна сумме цифр, стоящих на чётных. 5) Последние три цифры номера – последовательно возрастающие. И наконец 6) Значность номера – число совершенное и в то же время треугольное.
Окинув намётанным глазом это обширное хозяйство, я сразу сообразил, что самая важная примета – шестая, последняя, поскольку касается она значности числа. Выходит, с неё и надо начинать. Но прежде я напомнил участникам конференции об одной особенности совершенных чисел. Они растут как на дрожжах! Если первое из них – 6 –число однозначное, второе – 28 – двузначное, то третье – 496 – уже трёхзначное, а последнее из известных совершенных чисел записывается более чем шестью тысячами знаков!
Совершенно ясно, что лотерейный номер не может быть таким длинным. Речь, стало быть, может идти только о двух первых совершенных числах, которые, кстати, оба треугольные. Но второе из них – 28 – придётся отмести. Почему? Да потому, что в числе, состоящем из двадцати восьми цифр, какие-то непременно повторяются. А это противоречит первой примете: все цифры в номере разные. Остаётся число 6. И стало быть, номер – шестизначный. Вот и всё, что мы можем пока извлечь из наших многочисленных признаков.
– Негусто, – вздохнул Главный те рятель, уныло допивая остывший кофе.
– Но и не так уж мало, – бодро возразил я. – Всё-таки некоторые ассоциации привели нас к существенным результатам. И потому – двинемся за новыми!
Двинуться, однако, не удалось, потому что в это время к нам подошёл тот самый человек, который расшифровал название ансамбля.
– Извините великодушно, – сказал он, – у вас такая удивительная собака! Вот я и подумал, что вы, должно быть, тоже любите математику…
– Конечно, любим! А иногда и знаем, – сказала девочка, лукаво взглянув на меня.
– Очень, очень приятно! – обрадовался незнакомец. – Недаром я сразу почувствовал, что здесь мне помогут. Видите ли, я дрессировщик. Выступаю с группой обезьян. Недавно я выписал для них бананы. Мои обезьяны без бананов не могут, и я всегда делаю большие запасы. На сей раз поставщик оказался шутником. Он заявил, что числа отправленных бананов не помнит. Знает лишь, что оно было наименьшим из возможных, оканчивается четвёркой, и что эта четвёрка, будучи переставлена в начало числа, увеличит его вчетверо. Так вот, если я отгадаю, сколько штук бананов отправлено, он обязуется посылать мне каждый месяц столько же, и мои обезьяны будут обеспечены бананами до скончания века. Не поможете ли мне узнать, что это за число?
– С величайшим удовольствием! – отвечал я. – Находить числа – моя святая обязанность. Правда, ваш случай не из лёгких. Но у меня есть один приём, и он нас выручит. Итак, мы ищем число с четвёркой на конце, и эта четвёрка, очутившись в начале числа, увеличит его вчетверо. Так узнаем сперва зто учетверённое число. Попробуем неизвестное нам число отправленных бананов умножить на 4. «Как?! – воскликнете вы. – Как же это возможно? Ведь оно неизвестное!» Да, отвечу я, но не совсем. У него есть кончик – четвёрка. Ухватимся за этот кончик и попробуем вытащить всё число. Для начала умножим четвёрку на 4, чтобы получить последнюю цифру учетверённого числа. 4x4=16. Вот вам и число единиц в новом числе: это 6. Причём в уме у нас остаётся единица, которая перейдёт в следующий разряд. А теперь… Теперь вступает в силу мой приём. Умножим последнюю цифру учетверённого числа 6 на 4, не забыв прибавить к произведению единицу. Получим 25: 6x4=24; 24+1=25. Вот у нас появилась и вторая цифра с конца – 5, при этом 2 остаётся в уме. Снова умножаем 5 на 4 и прибавляем к произведению двойку. Получаем 22: 5x4=20; 20+2=22. Вот вам и третья цифра с конца – 2, а два придерживаем в уме. Снова умножаем 2 на 4, прибавляем двойку и получаем 10. Теперь у нас уже есть четвёртая цифра с конца – 0, да единица в уме. Умножаем 0 на 4, затем прибавляем к произведению единицу и получаем 1: 0x4=0; 0+1=1. Это уже пятая цифра с конца. И наконец, умножив 1 на 4, получаем шестую с конца цифру – 4. Так, шаг за шагом, мы вытащили из неизвестности учетверённое число бананов 410256. Остаётся разделить его на четыре, чтобы найти искомое. Но делать это незачем. Ведь по условию, вернув четвёрку в конец числа, мы его сделаем вчетверо меньше. И, значит, число это – 102564. На всякий случай проверим: умножим 102564 на 4 и получим… 410256. Ошибки нет. Число найдено. И довольно-таки солидное число. Похоже, обезьяны ваши с голода не умрут…
Дрессировщик был вне себя от радости. Он превозносил и меня, и мой способ, и щедрость своего поставщика, который собирается заплатить такой дорогой ценой за решение задачи.
Но я сказал, что поставщик его оказался не только щедрым, но и милосердным. Ведь если бы в условии задачи не было сказано, что надо найти наименьшее из возможных чисел, так пришлось бы нам вычислять число посланных бананов до бесконечности. Потому что 102564 – это период бесконечного целого периодического числа. И, продолжив наше умножение тем же способом, мы снова и снова получим те же цифры, то же число.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29