ТОП авторов и книг ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ
Или вся молекула из-за этого может свернуться в узел.
В результате молекулярное производство превращается в серию испытаний возможного и невозможного – для того, чтобы в конце концов подобрать такое расположение атомов и групп атомов в молекуле, при котором вся структура будет стабильной и будет функционировать желаемым образом. Перед лицом всех этих трудностей невозможно игнорировать тот факт, что в природе уже существуют молекулярные фабрики, способные производить большое количество молекул – эти фабрики называются клетками.
– К сожалению, клеточное производство не способно дать нам ожидаемый конечный результат, – сказал Рики. – Клетки производят для нас молекулярный субстрат – сырье, исходный материал, – а потом, уже с помощью нанотехнологических методов, мы собираем из этого сырья нужные молекулы.
Я указал на стальные баки:
– И какие клетки вы там выращиваете?
– Тета-ди 5972, – сказал он.
– И что это за бактерии?
– Один из штаммов кишечной палочки.
Кишечная палочка – довольно распространенная бактерия, большое количество кишечной палочки обитает в естественной природной среде, в том числе и внутри кишечника человека. Я спросил:
– А кто-нибудь подумал, что это не слишком хорошая идея – использовать бактерии, способные существовать в организме человека?
– Вообще-то нет, – сказал Рики. – Честно говоря, мы об этом не думали. Нам просто нужен был хорошо изученный вид бактерий, полностью описанный в литературе. Мы отбирали промышленный стандарт.
– Э-э…
– Как бы то ни было, Джек, – продолжал Рики, – вряд ли с этим будут какие-то проблемы. Этот штамм не способен жить в теле человека. Тета-ди 5972 оптимизирован под разнообразные питательные среды – чтобы удешевить стоимость его выращивания в лабораторных условиях. По-моему, эти бактерии могут расти даже на куче мусора.
– Значит, вот как вы получаете свои молекулы. Их для вас выращивают бактерии…
– Да, – сказал Рики, – Так мы получаем первичные молекулы. Мы производим двадцать семь разновидностей первичных молекул. Они собираются в относительно высокотемпературных условиях, при которых атомы более активны и быстрее соединяются друг с другом.
– Поэтому здесь так жарко?
– Да. Эффективность реакций максимальна при ста сорока семи градусах по Фаренгейту <147 градусов по Фаренгейту = 64 градусам по Цельсию>. При такой температуре мы с ними и работаем, чтобы поддерживать скорость рекомбинаций на максимуме. Но эти молекулы могут работать и при гораздо более низких температурах. Даже при сорока пяти-сорока градусах по Фаренгейту <40 – 45 градусов по Фаренгейту = 4 – 7 градусов по Цельсию> можно получить какое-то количество молекулярных комбинаций.
– И вам не нужны никакие дополнительные условия? – спросил я. – Вакуум? Повышенное давление? Сильное магнитное поле?
Рики покачал головой.
– Нет, Джек. Мы создаем такие условия, чтобы ускорить процесс сборки, но в них нет критической необходимости. Проблема решена очень элегантно. Соединять компоненты молекул друг с другом довольно просто.
– И, соединив эти компоненты молекул вместе, вы получаете в результате молекулярные ассемблеры?
– Да. А они потом собирают те молекулы, которые нам нужны.
Это в самом деле было очень умное решение – создавать молекулярные ассемблеры с помощью бактерий. Но Рики утверждал, что ассемблеры получаются почти автоматически – если для этого не нужно ничего, кроме высокой температуры. Зачем же тогда им понадобилась эта сложная стеклянная конструкция?
– Для повышения эффективности и разделения процесса, – объяснил Рики.
– Мы можем одновременно создавать до девяти разных ассемблеров в разных ветвях комплекса.
– А где ассемблеры собирают конечные молекулы?
– В этом же самом сборочном комплексе. Но сначала мы их перенастраиваем
Я не понял значения этого термина и покачал головой.
– Перенастраиваете?
– Это небольшое усовершенствование, которое мы разработали. Мы его уже запатентовали Понимаешь, наша система с самого начала работала правильно, но выход конечного продукта был слишком низким. Мы получали полграмма конечных молекул в час. При такой производительности на создание одной-единственной камеры потребовалось бы несколько дней. Мы никак не могли понять, в чем проблема. Конечный процесс сборки в ветвях комплекса происходил в газовой фазе. И оказалось, что молекулярные ассемблеры слишком тяжелые и тонут в такой разреженной среде. Бактерии, более легкие, плавают в следующем слое, над ассемблерами, и выбрасывают компоненты молекул, которые еще легче. Эти компоненты поднимаются кверху, выше слоя бактерий. Таким образом, ассемблеры не могли дотянуться до молекул, из которых они должны были собирать конечный продукт. Мы пытались применить различные технологии смешивания слоев, но они не давали результата.
– И что же вы сделали?
– Мы модифицировали процесс создания ассемблеров так, что у них появилось липотропное основание, с помощью которого ассемблеры могли приклеиваться к поверхности бактерий. Таким образом, ассемблеры получили гораздо лучший доступ к молекулам, и производительность немедленно возросла на пять порядков.
– Значит, теперь ваши ассемблеры прикреплены к бактериям?
– Именно. Они прикрепляются к наружной клеточной мембране.
Подойдя к ближайшему компьютеру, Рики вывел на плоский жидкокристаллический экран схематическое изображение ассемблера. С виду ассемблер напоминал зубчатую шестеренку со множеством спиралевидных отростков, направленных в разные стороны, и плотным узлом атомов в центре.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
В результате молекулярное производство превращается в серию испытаний возможного и невозможного – для того, чтобы в конце концов подобрать такое расположение атомов и групп атомов в молекуле, при котором вся структура будет стабильной и будет функционировать желаемым образом. Перед лицом всех этих трудностей невозможно игнорировать тот факт, что в природе уже существуют молекулярные фабрики, способные производить большое количество молекул – эти фабрики называются клетками.
– К сожалению, клеточное производство не способно дать нам ожидаемый конечный результат, – сказал Рики. – Клетки производят для нас молекулярный субстрат – сырье, исходный материал, – а потом, уже с помощью нанотехнологических методов, мы собираем из этого сырья нужные молекулы.
Я указал на стальные баки:
– И какие клетки вы там выращиваете?
– Тета-ди 5972, – сказал он.
– И что это за бактерии?
– Один из штаммов кишечной палочки.
Кишечная палочка – довольно распространенная бактерия, большое количество кишечной палочки обитает в естественной природной среде, в том числе и внутри кишечника человека. Я спросил:
– А кто-нибудь подумал, что это не слишком хорошая идея – использовать бактерии, способные существовать в организме человека?
– Вообще-то нет, – сказал Рики. – Честно говоря, мы об этом не думали. Нам просто нужен был хорошо изученный вид бактерий, полностью описанный в литературе. Мы отбирали промышленный стандарт.
– Э-э…
– Как бы то ни было, Джек, – продолжал Рики, – вряд ли с этим будут какие-то проблемы. Этот штамм не способен жить в теле человека. Тета-ди 5972 оптимизирован под разнообразные питательные среды – чтобы удешевить стоимость его выращивания в лабораторных условиях. По-моему, эти бактерии могут расти даже на куче мусора.
– Значит, вот как вы получаете свои молекулы. Их для вас выращивают бактерии…
– Да, – сказал Рики, – Так мы получаем первичные молекулы. Мы производим двадцать семь разновидностей первичных молекул. Они собираются в относительно высокотемпературных условиях, при которых атомы более активны и быстрее соединяются друг с другом.
– Поэтому здесь так жарко?
– Да. Эффективность реакций максимальна при ста сорока семи градусах по Фаренгейту <147 градусов по Фаренгейту = 64 градусам по Цельсию>. При такой температуре мы с ними и работаем, чтобы поддерживать скорость рекомбинаций на максимуме. Но эти молекулы могут работать и при гораздо более низких температурах. Даже при сорока пяти-сорока градусах по Фаренгейту <40 – 45 градусов по Фаренгейту = 4 – 7 градусов по Цельсию> можно получить какое-то количество молекулярных комбинаций.
– И вам не нужны никакие дополнительные условия? – спросил я. – Вакуум? Повышенное давление? Сильное магнитное поле?
Рики покачал головой.
– Нет, Джек. Мы создаем такие условия, чтобы ускорить процесс сборки, но в них нет критической необходимости. Проблема решена очень элегантно. Соединять компоненты молекул друг с другом довольно просто.
– И, соединив эти компоненты молекул вместе, вы получаете в результате молекулярные ассемблеры?
– Да. А они потом собирают те молекулы, которые нам нужны.
Это в самом деле было очень умное решение – создавать молекулярные ассемблеры с помощью бактерий. Но Рики утверждал, что ассемблеры получаются почти автоматически – если для этого не нужно ничего, кроме высокой температуры. Зачем же тогда им понадобилась эта сложная стеклянная конструкция?
– Для повышения эффективности и разделения процесса, – объяснил Рики.
– Мы можем одновременно создавать до девяти разных ассемблеров в разных ветвях комплекса.
– А где ассемблеры собирают конечные молекулы?
– В этом же самом сборочном комплексе. Но сначала мы их перенастраиваем
Я не понял значения этого термина и покачал головой.
– Перенастраиваете?
– Это небольшое усовершенствование, которое мы разработали. Мы его уже запатентовали Понимаешь, наша система с самого начала работала правильно, но выход конечного продукта был слишком низким. Мы получали полграмма конечных молекул в час. При такой производительности на создание одной-единственной камеры потребовалось бы несколько дней. Мы никак не могли понять, в чем проблема. Конечный процесс сборки в ветвях комплекса происходил в газовой фазе. И оказалось, что молекулярные ассемблеры слишком тяжелые и тонут в такой разреженной среде. Бактерии, более легкие, плавают в следующем слое, над ассемблерами, и выбрасывают компоненты молекул, которые еще легче. Эти компоненты поднимаются кверху, выше слоя бактерий. Таким образом, ассемблеры не могли дотянуться до молекул, из которых они должны были собирать конечный продукт. Мы пытались применить различные технологии смешивания слоев, но они не давали результата.
– И что же вы сделали?
– Мы модифицировали процесс создания ассемблеров так, что у них появилось липотропное основание, с помощью которого ассемблеры могли приклеиваться к поверхности бактерий. Таким образом, ассемблеры получили гораздо лучший доступ к молекулам, и производительность немедленно возросла на пять порядков.
– Значит, теперь ваши ассемблеры прикреплены к бактериям?
– Именно. Они прикрепляются к наружной клеточной мембране.
Подойдя к ближайшему компьютеру, Рики вывел на плоский жидкокристаллический экран схематическое изображение ассемблера. С виду ассемблер напоминал зубчатую шестеренку со множеством спиралевидных отростков, направленных в разные стороны, и плотным узлом атомов в центре.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126