ТОП авторов и книг ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ
Чем больше это различие, тем меньше вероятность вызова возбуждения командного нейрона.
Для выполнения произвольной двигательной реакции требуется участие нейронов памяти. На командных нейронах сходятся пути не только от детекторных сетей, но и от нейронов памяти.
Все перечисленные блоки рефлекторной концептуальной дуги образуют первую сигнальную систему. Для человека характерен блок «сигнала сигналов» — вторая сигнальная система, которая представлена специальными нейронами, реализующими символьную функцию, когда сигнал-символ выступает заместителем группы событий, представленных на нейронах памяти. Сигнал из семантической памяти, согласно инструкции, задаче, также способен инициировать вход к командному нейрону и вызывать соответствующую реакцию.
Векторный принцип управления обнаруживается и в вегетативных реакциях. Первое описание сердечного ритма (СР) в векторных понятиях принадлежит группе исследователей из Университета штата Огайо — И. Кациоппо и его коллегам (Cacioppo I.T.).
Основываясь на результатах изучения СР у крыс с избирательной блокадой симпатической и парасимпатической ветвей автономной нервной системы, они представили период сердеч-
251
дых
0,02 0,04 0,06 0,08 0,1 0,12 0.14 0,16 0,3 0,5
МЕТ СОС ДЫХ -ч ^^\ ^ \
0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,3
0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,3 0,5
СОС
дых
0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,3 0,5
Рис. 54. Факторные нагрузки четырех векторных пространств сердечного
ритма.
а — студенты (90 человек); б — школьники (60 человек); в — беременные женщины (135 человек); г — их плоды. О сходстве пространств сердечного ритма свидетельствуют их трехмерная структура и идентичная интерпретация факторов: МЕТ, СОС, ДЫХ (метаболическим, сосудистый и дыхательный модуляторы СР). По ординате — факторные нагрузки, по абсциссе — частотные полосы спектра мощности РГ сердца.
ных сокращений как функцию двух независимых переменных: возбуждений симпатической и парасимпатической систем. Последние образуют двухкомпонентные векторы возбуждения, воздействующие на пейсмекер СР. Таким образом, все реакции пейсме-кера СР, согласно данной модели, представлены в двухмерном пространстве. Векторная модель СР дальнейшее развитие получила в работах, в которых исследовалась римическая модуляция пей-смекера СР. Согласно данным ряда исследователей, применявших метод частотного анализа для обработки ритмограммы сердца (последовательности RR-интервалов), период разряда пейсмекера сердца находится под модулирующим контролем по крайней мере трех ритмически работающих осцилляторов. В спектре ритмограммы сердца обычно выделяют три зоны частотной модуляции периода сердечного цикла: метаболическую, сосудистую и дыхательную. Метаболическую (в полосе частот до 0,05 Гц) модуляцию связывают с гуморальными и температурными влияниями; сосудистая модулирующая система представлена в спектре на частоте около 0,1 Гц (волны Траубе — Геринга — Мейера). Дыхательная аритмия проявляется в полосе частот 0,11—0,5 Гц.
С позиции векторного принципа кодирования информации частотный спектр вариабельности СР выражает влияние нескольких независимо работающих ритмических модуляторов. Поэтому каждый спектр ритмограммы может быть представлен в пространстве, размерность которого определяется числом независимо работающих систем, ритмически управляющих работой пейсмекера сердца.
Применение факторного анализа (метода главных компонент) к большим массивам спектров ритмограммы сердца выявило трехмерность полученных пространств СР. Их первые три фактора в совокупности описывают высокий процент дисперсии спектров (порядка 75-83%). Оси векторных пространств интерпретируются как метаболический, сосудистый и дыхательный осцилляторы, модулирующие период разрядов пейсмекера сердца.
Существует большое сходство трехмерных пространств сердечного ритма, полученных для разных возрастных групп: студентов (90 человек), школьников (60 человек), беременных женщин и их плодов (135 пар обследованных) (рис. 54).
В таком трехмерном пространстве каждый частотный спектр вариабельности СР представлен точкой, локализованной в определенном месте пространства. Изменению частотного спектра соответствует траектория движения точки в пространстве.
С помощью векторного пространства СР выделено два типа состояний, наиболее часто встречающихся во время когнитивной деятельности. Их различает противоположное направление смеще-
253
сое
I——I——\-
-- А Фон
^ — i — i
Арифметика
0,4
ДЫХ
\
сое
•Проверка ДЫХ
Фон
Рис. 55. Два типа реакций СР, определяемых особенностями информационной нагрузки, в вегетативном пространстве на плоскости сосудисто-дыхательной модуляции представлены смещением спектра в противоположных направлениях.
СОС, ДЫХ — сосудистый и дыхательный модуляторы СР; а — арифметические операции перемножения в быстром темпе вызывают редукцию мощности сосудистых и дыхательных модуляций RR-интервала, рост ЧСС и ИН; б — процесс заучивания искусственных названий цветовых стимулов, а также последующая проверка заученных ассоциаций вызывают противоположный тип реакции: рост мощности сосудистой и дыхательной модуляций при снижении ЧСС и ИН (по Н.Н. Даниловой, 1995).
ния вектора СР в пространстве под влиянием информационной нагрузки. Один тип реакции СР связан со стрессом, возникающим при перемножении двузначных чисел в скоростном темпе. Он представлен редукцией мощности дыхательной и сосудистой модуляций, ростом ЧСС и увеличением тревожности (по тесту Спильбер-гера), что указывает на появление оборонительных реакций.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
Для выполнения произвольной двигательной реакции требуется участие нейронов памяти. На командных нейронах сходятся пути не только от детекторных сетей, но и от нейронов памяти.
Все перечисленные блоки рефлекторной концептуальной дуги образуют первую сигнальную систему. Для человека характерен блок «сигнала сигналов» — вторая сигнальная система, которая представлена специальными нейронами, реализующими символьную функцию, когда сигнал-символ выступает заместителем группы событий, представленных на нейронах памяти. Сигнал из семантической памяти, согласно инструкции, задаче, также способен инициировать вход к командному нейрону и вызывать соответствующую реакцию.
Векторный принцип управления обнаруживается и в вегетативных реакциях. Первое описание сердечного ритма (СР) в векторных понятиях принадлежит группе исследователей из Университета штата Огайо — И. Кациоппо и его коллегам (Cacioppo I.T.).
Основываясь на результатах изучения СР у крыс с избирательной блокадой симпатической и парасимпатической ветвей автономной нервной системы, они представили период сердеч-
251
дых
0,02 0,04 0,06 0,08 0,1 0,12 0.14 0,16 0,3 0,5
МЕТ СОС ДЫХ -ч ^^\ ^ \
0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,3
0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,3 0,5
СОС
дых
0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,3 0,5
Рис. 54. Факторные нагрузки четырех векторных пространств сердечного
ритма.
а — студенты (90 человек); б — школьники (60 человек); в — беременные женщины (135 человек); г — их плоды. О сходстве пространств сердечного ритма свидетельствуют их трехмерная структура и идентичная интерпретация факторов: МЕТ, СОС, ДЫХ (метаболическим, сосудистый и дыхательный модуляторы СР). По ординате — факторные нагрузки, по абсциссе — частотные полосы спектра мощности РГ сердца.
ных сокращений как функцию двух независимых переменных: возбуждений симпатической и парасимпатической систем. Последние образуют двухкомпонентные векторы возбуждения, воздействующие на пейсмекер СР. Таким образом, все реакции пейсме-кера СР, согласно данной модели, представлены в двухмерном пространстве. Векторная модель СР дальнейшее развитие получила в работах, в которых исследовалась римическая модуляция пей-смекера СР. Согласно данным ряда исследователей, применявших метод частотного анализа для обработки ритмограммы сердца (последовательности RR-интервалов), период разряда пейсмекера сердца находится под модулирующим контролем по крайней мере трех ритмически работающих осцилляторов. В спектре ритмограммы сердца обычно выделяют три зоны частотной модуляции периода сердечного цикла: метаболическую, сосудистую и дыхательную. Метаболическую (в полосе частот до 0,05 Гц) модуляцию связывают с гуморальными и температурными влияниями; сосудистая модулирующая система представлена в спектре на частоте около 0,1 Гц (волны Траубе — Геринга — Мейера). Дыхательная аритмия проявляется в полосе частот 0,11—0,5 Гц.
С позиции векторного принципа кодирования информации частотный спектр вариабельности СР выражает влияние нескольких независимо работающих ритмических модуляторов. Поэтому каждый спектр ритмограммы может быть представлен в пространстве, размерность которого определяется числом независимо работающих систем, ритмически управляющих работой пейсмекера сердца.
Применение факторного анализа (метода главных компонент) к большим массивам спектров ритмограммы сердца выявило трехмерность полученных пространств СР. Их первые три фактора в совокупности описывают высокий процент дисперсии спектров (порядка 75-83%). Оси векторных пространств интерпретируются как метаболический, сосудистый и дыхательный осцилляторы, модулирующие период разрядов пейсмекера сердца.
Существует большое сходство трехмерных пространств сердечного ритма, полученных для разных возрастных групп: студентов (90 человек), школьников (60 человек), беременных женщин и их плодов (135 пар обследованных) (рис. 54).
В таком трехмерном пространстве каждый частотный спектр вариабельности СР представлен точкой, локализованной в определенном месте пространства. Изменению частотного спектра соответствует траектория движения точки в пространстве.
С помощью векторного пространства СР выделено два типа состояний, наиболее часто встречающихся во время когнитивной деятельности. Их различает противоположное направление смеще-
253
сое
I——I——\-
-- А Фон
^ — i — i
Арифметика
0,4
ДЫХ
\
сое
•Проверка ДЫХ
Фон
Рис. 55. Два типа реакций СР, определяемых особенностями информационной нагрузки, в вегетативном пространстве на плоскости сосудисто-дыхательной модуляции представлены смещением спектра в противоположных направлениях.
СОС, ДЫХ — сосудистый и дыхательный модуляторы СР; а — арифметические операции перемножения в быстром темпе вызывают редукцию мощности сосудистых и дыхательных модуляций RR-интервала, рост ЧСС и ИН; б — процесс заучивания искусственных названий цветовых стимулов, а также последующая проверка заученных ассоциаций вызывают противоположный тип реакции: рост мощности сосудистой и дыхательной модуляций при снижении ЧСС и ИН (по Н.Н. Даниловой, 1995).
ния вектора СР в пространстве под влиянием информационной нагрузки. Один тип реакции СР связан со стрессом, возникающим при перемножении двузначных чисел в скоростном темпе. Он представлен редукцией мощности дыхательной и сосудистой модуляций, ростом ЧСС и увеличением тревожности (по тесту Спильбер-гера), что указывает на появление оборонительных реакций.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147