ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

На нем конвергируют проекции ДА-ергических и НА-ергических структур ствола мозга, соответственно представляющие системы положительного и отрицательного подкрепления.
Стриатум участвует в распределении восходящей в кору неспецифической активации. Это достигается через таламус — систему, определяющую локальную активацию. Под влиянием стриатума картина распределения активации в таламусе начинает соответствовать мотивационному возбуждению и кортикофугальным сигналам, поступающим на стриатум. На уровне коры эта картина трансформиру-
89
ется в паттерн активации, который отвечает требованиям, поставленным задачей, или реализации целенаправленного поведения.
Все три системы активации, реализуя свои специфические функции, вместе с тем имеют общие входы и выходы. Создавая свои локальные эффекты активации, все системы имеют выход на кору через таламус. Стволово-таламо-кортикальная система использует таламус для локальной активации как компонента ОР. Базаль-ная холинергическая система переднего мозга через таламус реализует корковую активацию на значимые стимулы. Каудо-таламо-кортикальная система также использует таламус для создания в коре картины распределения локусов активации, необходимой для выполнения той или иной деятельности. Кортикофугальные влияния, главным образом из префронтальной коры, достигают холи-нергической активационной системы через стриопаллидарную (хвостатое и прилегающее ядра). Генерализованная реакция активации, вызываемая сенсорными стимулами вследствие возбуждения РФ среднего мозга, опосредована холинергической системой переднего мозга. Последняя имеет прямое отношение к регуляции цикла бодрствование—сон, что сближает механизм генерализованного ориентировочного рефлекса с функциональным состоянием бодрствования.
5.10. ГАММА-КОЛЕБАНИЯ И ВНИМАНИЕ
Под ЭЭГ-реакцией активации у человека обычно понимают подавление, блокаду альфа-ритма, которая замещается нерегулярной и низкоамплитудной активностью. В некоторых работах описаны случаи, когда блокада альфа-ритма сочетается с одновременным усилением бета-активности, которая иногда выглядит как появление регулярного ритма на частоте 29—30 Гц (Данилова Н.Н., 1985).
В последние годы наблюдается стремительный рост числа публикаций, в которых сообщается о наличии в составе реакции ЭЭГ-активации усиления гамма-колебаний (30—170 Гц и более). Их связывают с контролируемыми когнитивными процессами, в частности с произвольным вниманием.
Усиление ритма 40 Гц обнаружено у кошки в лобно-теменной коре, когда она пристально следит за мышью (Bouyer JJ. et al., 1987). У млекопитающих, включая человека, колебания 40 Гц наблюдались в связи с состоянием направленного внимания не только в коре, но и в таламусе (Murthy V.N., Fetz E.E., 1992). На частоте гамма-колебаний обнаружено явление синхронизации вызванных ответов у нейронов коры. Синхронизацию вызывают сенсорное воздействие (Gray C.M., Singer W., 1989), решение сенсомотор-
90
ной задачи (Murthy V.N., Fetz E.E., 1992) и другие активирующие факторы. Осцилляции 40 Гц появляются у нейронов синхронно и в фазе. Они могут охватывать нейроны как сенсорной, так и моторной коры. Высокочастотная электрическая стимуляция РФ ствола мозга, вызывающая генерализованную реакцию активации в коре, одновременно усиливает гамма-колебания (45 Гц), которые отражаются и в фокальных потенциалах зрительной коры (поле 17). На этом фоне можно наблюдать синхронизацию вызванных ответов нейронов зрительной коры, которые избирательно реагируют на одно и то же физическое свойство стимула, например на движущуюся в определенном направлении полоску (Munk M.H.Y. et al., 1996).
Механизм генерации ритмов мозга связывают с работой пейсме-керных систем— ритмоводителей. До недавнего времени пейсмеке-ры ритмической активности, в частности таламуса, представляли в виде нейронной сети с реверберацией возбуждения, которая римичес-ки прерывается через механизм обратной связи (Verzeano M., 1972; Andersen P., Andersson S.A., 1968; Данилова Н.Н., 1985).
Однако в последнее время все больше подчеркивается роль пей-смекерных нейронов в генезе ритмов мозга. Пейсмекерный нейрон порождает градуальные эндогенные потенциалы, которые, достигая порога, запускают генерацию ПД. У такого нейрона ритмический эндогенный потенциал регистрируется даже после полной изоляции нейрона. Изучение механизмов генерации пейсмекерных осцилляции показывает, что римическая активность мозга скорее всего представляет тот тип пейсмекерных потенциалов, появление которых определяется взаимодействием потенциалзависимых кальциевых каналов и кальцийзависимых калиевых каналов. Пейсмекерный цикл в таких нейронах включает следующую цепочку реакций:
• активация потенциалзависимых Са2+-каналов и как следствие — увеличение деполяризации нейронов;
• активация кальцийзависимых К-каналов, определяющих волну гиперполяризации;
• инактивация Са2+-каналов из-за снижения притока ионов Са2+ в клетку вследствие гиперполяризации мембраны в результате открытия К-каналов;
• инактивация (закрытие) Са2+-зависимых К-каналов за счет снижения внутриклеточной концентрации ионов кальция;
• активация (деполяризация мембраны) под влиянием гиперполяризации Na-каналов. Последняя служит началом для следующего цикла.
Потенциалзависимые кальциевые каналы делятся на низкопороговые и высокопороговые. Высокопороговая кальциевая проводи-
91
мость в основном представлена на дендритах, тогда как низкопороговые кальциевые каналы локализованы преимущественно на соме клетки (Llinas R., 1988). Активация пейсмекерного нейрона (появление пейсмекерных волн) начинается с открытия низкопороговых потенциалзависимых кальциевых каналов.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики