ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

 

Сопоставление двух величин скорости создает рази-
тельный контраст: за одну секунду звук распространяется на 332 метра, а
электромагнитная волна - на 300 миллионов метров.
Еще более удивительно, что свойства распространения волны сохраняются
постоянными и в такой принципиально отличной от других по физическим
свойствам среде, как эфир. Скорость здесь определяется по той же форму-
ле.
Еще немного о затухании
Иллюстрируя связь между увеличением затухания и частотой, мы привели
примеры из области акустики и электромагнитного излучения. К счастью, в
нашей области охраны мы имеем дело с расстоянием в несколько десятков
или, самое большее, в несколько сот метров. По сравнению с теми расстоя-
ниями, на которые обычно отправляются радиоволны и световые волны, наши
дистанции так коротки, и потеря энергии на них столь незначительна, что
при описании устройства, работающего на радиоволнах, фактор затухания
можно в расчет не брать.
Если, однако, мы имеем дело с ультразвуком, то этот фактор достаточно
весом. Он устанавливает предел для высоты частот. Превысив его, мы поте-
ряем слишком много энергии, и в результате эхо не будет достаточным,
чтобы обнаружить человека в помещении. Для большей ясности скажем, что
потеря энергии пропорциональна квадрату частоты. Например, увеличив час-
тоту излучения с 20 000 гц до 40 000 гц, мы уменьшим энергию эха на чет-
верть.
Дисперсия
Ниже мы рассмотрим другие фундаментальные причины, которые ограничи-
вают дальность действия пространственных детекторов.
Обратно пропорциональная зависимость от квадрата расстояния
Представим себе незаряженный, но включенный диапроектор, стоящий на
расстоянии 1 метра от экрана. Он высвечивает светлый квадрат, яркость
которого можно замерить. Удвоим расстояние до экрана. Площадь, покрывае-
мая световым пятном, также увеличится. Измерение вертикальных и горизон-
тальных сторон освещенного участка показывает, что площадь увеличилась в
четыре раза по сравнению с первоначальной. Однако мощность лампы диапро-
ектора осталась прежняя, поэтому можно утверждать, что при удвоении
расстояния между прибором и экраном яркость освещения сократится в че-
тыре раза по сравнению с первоначальной. Тот же здравый смысл должен
подсказать нам, что для сохранения прежней яркости освещения площади,
вдвое превышающей изначальную, нам надо было бы увеличить в мощность
лампы в четыре раза, например, со 100 до 400 ватт. Такая обратно пропор-
циональная зависимость от квадрата расстояния получила название закона
обратных квадратов. Она в равной степени применима к радио-, микроволно-
вым, ультразвуковым и пассивным инфракрасным датчикам обнаружения. Одна-
ко в случае, когда приемник и передатчик детектора располагаются друг
возле друга, как это характерно для устройств, использующих радарный
принцип, такая зависимость приобретает исключительно важное значение. Об
этом как раз и пойдет речь ниже, а также в главе 15.
Обратно пропорциональная зависимость от четвертой степени расстояния
Закон обратного квадрата применим и для энергии, отражающейся от тела
нарушителя и достигающей приемника системы, работающей по принципу рада-
ра. Прибегнем к аналогии с диапроектором, предположив, что свет отража-
ется от экрана почти идеально. Экран становится передатчиком, а глаз че-
ловека, находящегося рядом с аппаратом - приемником. Допустим, нам уда-
лось сохранить без изменений освещенность экрана после того, как мы уд-
воили расстояние между диапроектором и экраном. В этом случае глаз чело-
века все равно воспринимает это, как будто яркость света уменьшилась в
четыре раза, как и вначале, потому что действует уже известная нам зако-
номерность. Вообще же, в ситуациях она действует в двух направлениях -
сначала от диапроектора к экрану, затем от экрана к глазу наблюдающего.
Таким образом, получается, что глаз получает в качестве отражения одну
четвертую часть от одной четвертой части первоначального освещения, или
другими словами, одну шестнадцатую часть той энергии, которая восприни-
малась глазом наблюдателя, когда экран находился на расстоянии 1 метра.
К счастью, человеческий глаз автоматически корректирует свою чувстви-
тельность, однако приемник детектора не обладает такой способностью.
Приемники детекторов почти все время работают при максимальном уровне
чувствительности, в то время как мощность передатчиков обычно ограничи-
вается соображениями экономии или правительственными ограничениями.
Если бы вы пожелали увеличить радиус обнаружения цели у допплеровских
систем в два раза, вам пришлось бы увеличить мощность передатчика в 16
раз. В обычных условиях такое едва ли возможно, поэтому многие идут по
пути увеличения чувствительности приемников и таким образом усугубляют
проблему ложных сигналов тревоги, так как приемники начинают фиксировать
любые незначительные отклонения от нормы.
Форма пучка
Обнаружение цели в пространстве имеет еще один значимый аспект, кото-
рый необходимо знать для общего понимания вопроса. Вернемся снова к при-
меру с диапроектором. Предположим, что в лекционной аудитории аппарат
освещает экран с расстояния 10 метров. Случилось так, что потребовалось
место и диапроектор передвинули к задней стенке аудитории на расстояние
20 метров от экрана. С учетом сказанного выше нам ясно, что изображение
на экране теперь увеличилось в четыре раза, а освещенность уменьшилась.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики