ТОП авторов и книг ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ
термодиффузия; «изотопный шлюз»; ультрацентрифуга; «разделительная труба» (вариант термодиффузии); разделение изотопов в жидких соединениях урана и диффузия изотопов в металлах-носителях. Стоило бы упомянуть и восьмой метод – диффузию гексафторида урана сквозь пористые стенки. Изотоп урана U-235 легче проникает сквозь них, и, многократно повторяя процесс, мы обогащаем этот изотоп.
Немецкий ученый Густав Герц, лауреат Нобелевской премии 1925 года, придумал метод газовой диффузии еще в начале тридцатых годов, разделяя изотопы неона. Но на него-то как раз и не обратили никакого внимания. Зря! Именно действуя по этому методу, изотопы с успехом разделяли и в Англии, и в США.
На пороге создания атомной бомбы
Итак, подготовительные работы вчерне были завершены. У ученых появилась уверенность, что расщепленное атомное ядро может стать источником энергии невиданной ранее мощности. Что делать дальше?
Летом 1941 года немецкие физики вновь стали подумывать о том, что плутоний мог бы заменить уран, с которым было столько хлопот. И помог им в этом новый, весьма колоритный сотрудник – профессор Фриц Хоутерманс, появившийся в конце 1940 года в лаборатории барона Арденне.
Его история не совсем обычна для Германии, но типичная для СССР. В 1933 году, когда к власти в Германии пришли нацисты, он бежал из страны. Бежал не в Америку, не во Францию, как его коллеги, а в Россию. Здесь его вскоре записали в шпионы, и, избежав знакомства с немецким концлагерем, он попал в советский.
В 1939 году, после подписания пакта Молотов-Риббентроп, его выпустили из застенков Берии и этапировали в казематы гестапо. (Знали бы наши особисты, кого отпускают!..) Там он просидел всего три месяца и был освобожден, однако ему запретили работать в государственных учреждениях. И тогда его спас профессор Макс фон Лауэ. Он порекомендовал его барону Арденне, которого, как мы уже видели, академические ученые со счастливой судьбой недолюбливали и чурались.
Хоутерманс стал для Арденне настоящей находкой. В августе 1941 года опальный профессор отпечатал на пишущей машинке 39 страничек, озаглавленных им «К вопросу о начале цепной реакции деления ядер». В своем сообщении первым из немецких ученых Хоутерманс подробно описал цепную реакцию под действием быстрых нейтронов, а также рассчитал критическую массу U-235, то есть наименьшую массу, при которой может протекать самоподдерживающаяся цепная ядерная реакция.
В первую очередь, его интересовал элемент, позднее названный плутонием. Вот доводы ученого. В природном уране содержится гораздо больше изотопа U-238, чем U-235. Так не логичнее ли использовать этот распространенный изотоп, чем тратить столько времени и сил на разделение изотопов? «Каждый из нейтронов, абсорбируемый ураном-238, а не участвующий в расщеплении урана-235, содействует тем самым появлению нового ядра, которое можно расщепить с помощью тепловых нейтронов», – писал Хоутерманс. За несколько месяцев до этого физик из Вены И. Шинтльмайстер показал, что при обстреле изотопа U-238 нейтронами возникает трансурановый элемент (номер 94). Используя его, продолжал Хоутерманс, можно создать новое взрывчатое вещество. Дело лишь за химиками. Нужно придумать, как отделить этот 94-й элемент от урана.
Эта скромная статья, написанная опальным ученым ( «за возможность написания этой работы я благодарю барона Манфреда фон Арденне»), стала этапной в судьбе немецкой ядерной физики. Ее автор убедительно показал, что незачем разделять изотопы. Надо идти другим путем. Но к его доводам все-таки не прислушались.
А между тем в марте 1941 года эксперимент, проведенный в Беркли, показал, что плутоний так же легко расщепляется, как и уран-235.
Во второй половине 1941 года фирма «Norsк-Hydro» получила заказ на производство полутора тонн тяжелой воды. Работы начались 9 октября, но к концу года было готово лишь 350 с небольшим килограммов. Кроме того, к концу года было получено более двух с половиной тонн чистого порошкового урана.
Однако Гейзенберг и Депель, повторяя у себя в Лейпциге эксперимент с урановым реактором, вновь использовали оксид урана, а не металлический порошок. Правда, теперь у них было целых 164 килограмма тяжелой воды. Оксид урана (142 килограмма) поместили внутрь алюминиевого шара диаметром 75 сантиметров. Два слоя оксида разделяла тонкая алюминиевая сфера. Источник нейтронов находился в центре. Реактор «упрятали» в резервуар с водой.
Однако и на этот раз размножение нейтронов не было зафиксировано. Тогда оба профессора перепроверили свои расчеты и учли нейтроны, которые поглощала алюминиевая сфера, разделявшая два концентрических слоя оксида. Вот тут-то они, наконец, и получили «положительный» коэффициент размножения нейтронов. «Именно в сентябре 1941 года, – вспоминал Гейзенберг, – мы поняли, что атомную бомбу создать можно».
В это время в среде немецких физиков нарастают споры. Многих начал подспудно мучить вопрос, морально ли продолжать работу над «урановым проектом» – ведь неминуемо будет создана бомба и, значит, погибнут многие тысячи людей. Эти сомнения обуревали и Гейзенберга, и Вейцзеккера, и Хоутерманса.
В конце октября 1941 года Гейзенберг отправился в Данию, чтобы встретиться с Нильсом Бором и испросить у него совета, как быть дальше, что делать?
Профессор П. Йенсен заметил по поводу этой встречи: «первосвященник» немецкой теоретической физики направил свои стопы к «папе римскому от науки», Бору, дабы искать у него «отпущения грехов».
Итак, Гейзенберг спросил «понтифика Нильса I», имеет ли физик моральное право работать во время войны над созданием атомной бомбы.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
Немецкий ученый Густав Герц, лауреат Нобелевской премии 1925 года, придумал метод газовой диффузии еще в начале тридцатых годов, разделяя изотопы неона. Но на него-то как раз и не обратили никакого внимания. Зря! Именно действуя по этому методу, изотопы с успехом разделяли и в Англии, и в США.
На пороге создания атомной бомбы
Итак, подготовительные работы вчерне были завершены. У ученых появилась уверенность, что расщепленное атомное ядро может стать источником энергии невиданной ранее мощности. Что делать дальше?
Летом 1941 года немецкие физики вновь стали подумывать о том, что плутоний мог бы заменить уран, с которым было столько хлопот. И помог им в этом новый, весьма колоритный сотрудник – профессор Фриц Хоутерманс, появившийся в конце 1940 года в лаборатории барона Арденне.
Его история не совсем обычна для Германии, но типичная для СССР. В 1933 году, когда к власти в Германии пришли нацисты, он бежал из страны. Бежал не в Америку, не во Францию, как его коллеги, а в Россию. Здесь его вскоре записали в шпионы, и, избежав знакомства с немецким концлагерем, он попал в советский.
В 1939 году, после подписания пакта Молотов-Риббентроп, его выпустили из застенков Берии и этапировали в казематы гестапо. (Знали бы наши особисты, кого отпускают!..) Там он просидел всего три месяца и был освобожден, однако ему запретили работать в государственных учреждениях. И тогда его спас профессор Макс фон Лауэ. Он порекомендовал его барону Арденне, которого, как мы уже видели, академические ученые со счастливой судьбой недолюбливали и чурались.
Хоутерманс стал для Арденне настоящей находкой. В августе 1941 года опальный профессор отпечатал на пишущей машинке 39 страничек, озаглавленных им «К вопросу о начале цепной реакции деления ядер». В своем сообщении первым из немецких ученых Хоутерманс подробно описал цепную реакцию под действием быстрых нейтронов, а также рассчитал критическую массу U-235, то есть наименьшую массу, при которой может протекать самоподдерживающаяся цепная ядерная реакция.
В первую очередь, его интересовал элемент, позднее названный плутонием. Вот доводы ученого. В природном уране содержится гораздо больше изотопа U-238, чем U-235. Так не логичнее ли использовать этот распространенный изотоп, чем тратить столько времени и сил на разделение изотопов? «Каждый из нейтронов, абсорбируемый ураном-238, а не участвующий в расщеплении урана-235, содействует тем самым появлению нового ядра, которое можно расщепить с помощью тепловых нейтронов», – писал Хоутерманс. За несколько месяцев до этого физик из Вены И. Шинтльмайстер показал, что при обстреле изотопа U-238 нейтронами возникает трансурановый элемент (номер 94). Используя его, продолжал Хоутерманс, можно создать новое взрывчатое вещество. Дело лишь за химиками. Нужно придумать, как отделить этот 94-й элемент от урана.
Эта скромная статья, написанная опальным ученым ( «за возможность написания этой работы я благодарю барона Манфреда фон Арденне»), стала этапной в судьбе немецкой ядерной физики. Ее автор убедительно показал, что незачем разделять изотопы. Надо идти другим путем. Но к его доводам все-таки не прислушались.
А между тем в марте 1941 года эксперимент, проведенный в Беркли, показал, что плутоний так же легко расщепляется, как и уран-235.
Во второй половине 1941 года фирма «Norsк-Hydro» получила заказ на производство полутора тонн тяжелой воды. Работы начались 9 октября, но к концу года было готово лишь 350 с небольшим килограммов. Кроме того, к концу года было получено более двух с половиной тонн чистого порошкового урана.
Однако Гейзенберг и Депель, повторяя у себя в Лейпциге эксперимент с урановым реактором, вновь использовали оксид урана, а не металлический порошок. Правда, теперь у них было целых 164 килограмма тяжелой воды. Оксид урана (142 килограмма) поместили внутрь алюминиевого шара диаметром 75 сантиметров. Два слоя оксида разделяла тонкая алюминиевая сфера. Источник нейтронов находился в центре. Реактор «упрятали» в резервуар с водой.
Однако и на этот раз размножение нейтронов не было зафиксировано. Тогда оба профессора перепроверили свои расчеты и учли нейтроны, которые поглощала алюминиевая сфера, разделявшая два концентрических слоя оксида. Вот тут-то они, наконец, и получили «положительный» коэффициент размножения нейтронов. «Именно в сентябре 1941 года, – вспоминал Гейзенберг, – мы поняли, что атомную бомбу создать можно».
В это время в среде немецких физиков нарастают споры. Многих начал подспудно мучить вопрос, морально ли продолжать работу над «урановым проектом» – ведь неминуемо будет создана бомба и, значит, погибнут многие тысячи людей. Эти сомнения обуревали и Гейзенберга, и Вейцзеккера, и Хоутерманса.
В конце октября 1941 года Гейзенберг отправился в Данию, чтобы встретиться с Нильсом Бором и испросить у него совета, как быть дальше, что делать?
Профессор П. Йенсен заметил по поводу этой встречи: «первосвященник» немецкой теоретической физики направил свои стопы к «папе римскому от науки», Бору, дабы искать у него «отпущения грехов».
Итак, Гейзенберг спросил «понтифика Нильса I», имеет ли физик моральное право работать во время войны над созданием атомной бомбы.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180