ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

род. 22 октября 1793 г., воспитывался в казанской гимназии и университете, по математическому факультету. В 1811 г. Л. получил степень магистра и приступил к преподаванию в казанском унив. небесной механики и теории чисел. В 1816 г. Л. получил кафедру чистой математики. Он был 6 раз кряду избираем в ректоры университета и состоял членом многих ученых обществ и почетным членом университетов московского и казанского. Деятельность Л. была изумительна: он читал лекции и свои и за своих товарищей, посылаемых за границу, присутствовал на всех заседаниях и, в то же время, являлся творцом совершенно новых взглядов на геометрию. В числе аксиом, положенных Евклидом в основание геометрии, существует одна, так называемая 11-я аксиома, сводимая к утверждению, что через одну точку может быть проведена к данной прямой только одна параллельная. Уже с давних пор многим геометрам это положение не представлялось очевидным, и существует огромная литература попыток доказать это положение, основываясь на других аксиомах; но все такие попытки были неудачны, представляя собою сведение 11-й аксиомы на какое-нибудь другое положение, тоже не очевидное. Таким образом оставался нерешенным вопрос первостепенной важности: о степени достоверности геометрии, вытекающий из вопроса о том, достоверна ли 11-я аксиома. Эту трудную задачу, не поддававшуюся усилиям величайших умов, Л. решил окончательно, избрав чрезвычайно оригинальный путь. Л. попытался построить целую систему геометрических положений, исходящих из отрицания справедливости 11-й аксиомы, и при том систему строго логичную, не содержащую никаких внутренних противоречий. Если 11-я аксиома Евклида может быть доказана при помощи других аксиом, то она должна быть их следствием; если она представляет собой их следствие, то система Л., отвергающая ее, должна стать в противоречие с одной из других аксиом; если же такого противоречия не последует, то 11-я аксиома не представляет собой следствия одной из остальных аксиом, не может быть, при помощи их, доказана и является положением, которое следует или принять без доказательств, или свести на положение более очевидное. Против такого рассуждения возражали, говоря, что система Л. потому не встретилась с противоречием, что не была до него доведена, но итальянский геометр Бельтрами показал, что вся система Л. вполне совпадает с системой Евклида, если сравнить геометрию Л. на плоскости с обыкновенной геометрией на особой поверхности, называемой псевдосферой и представляющей вид шампанского бокала; так что если бы геометрия Л. встретила при своем развитии какие-либо несообразности, то и обыкновенная геометрия на псевдосфере была бы нелепа, откуда следует, что геометрия Л. не может быть приведена к абсурду. Таким образом, одна из великих заслуг Л. заключается в данном им доказательстве невозможности доказать 11-ю аксиому посредством других аксиом. Создав свою геометрию, Л. дал толчок к построению геометрических систем, имеющих дело с пространствами, совершенно не похожими на обыкновенное пространство, и этим указал на возможность логического мышления, имеющего объектами вещи, находящиеся вне времени и вне нашего обыкновенного пространства. В этом заключается высокое философское значение работ Л. Долгое время ученые мало обращали внимания на эти работы, и только Гаусс оценил при жизни Л. великое значение провозглашенных им идей; но после трудов Бельтрами, Римана и Гельмгольца эти идеи получили широкое распространение, и возник особый отдел математической литературы, представляющий собой значительное количество мемуаров, посвященных развитию идей Л. Казанское физико-математическое общество издало к юбилею Л., праздновавшемуся в день, когда исполнилось 100 лет со дня рождения великого геометра (сконч. Л. в 1856 г.), собрание переводов на русский язык важнейших основных сочинений по этой новой отрасли математики, под общим заглавием: «Об основании геометрии». Сочинения Л., ставящие его на ряду с гениальнейшими математиками всех времен, суть следующие: «О началах геометрии» ("Казанский Вестн. ", 1829 – 1830); «Geometrie imaginaire» («Crell's Journal fur die reine und angewandte Mathematik», т. 17); « Воображаемая геометрия» («Учен. Записки Казанского Унив.», 1835); «Новые начала геометрии с полной теорией параллельных» («Учен. Записки Казанского Унив.», 1835, 1836, 1837 и 1838); «Применение воображаемой геометрии к некоторым интегралам» («Учен. Записки Казанск. Унив.», 1836); «Geometrische Untersuchungen zur Theorie der Parallellinien» (Б., 1840); «Pangeometrie ou precis de geometrie fondee sur une theorie generale et rigoureuse des paralleles» – в сборнике, изданном по случаю юбилея казанского унив. в 1856 г.
Н. Делоне.

Лобное место

Лобное место – в московском Китай-городе, на Красной площади. Устроенное, по преданию, в начале XVI в., оно впервые упоминается под 1550 г., когда Иоанн IV дал с него народу торжественный обет править на благо государства. Из Годуновского чертежа Москвы видно, что это был помост из кирпича; по описям XVII в. он имел деревянную решетку, а также навес или шатер на столбах. В 1786 г. Л. место вновь отстроено, по прежнему плану, из дикого тесаного камня. Теперь возвышенный круглый помост его окружен каминными перилами; в зап. части – вход с железной решеткой и дверью; 11 ступеней ведут на верхнюю площадку. Наибольшее значение для московского населения Л. место имело в допетровское время. Издревле и доныне крестные ходы останавливаются около него и с его вершины архиерей осеняет народ крестным знаменем. Во время «Входа в Иерусалим» патриарх с духовенством восходил на Л. место, раздавал освященные вербы царю, духовенству и боярам и оттуда ехал на осле, ведомом царем.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики