ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Полученное отношение и есть искомая вероятность. Так, если белых шаров сто, а черных, положим, десять, то всех «случаев» будет сто десять, из них десять в пользу черных шаров. Поэтому вероятность вынуть черный шар будет 10 к 110, или 1 к 11.
Две задачи, предложенные кавалером де Мере, сводятся к следующему. Первая: как узнать, сколько раз надо метать две кости в надежде получить наибольшее число очков, то есть двенадцать; другая: как распределить выигрыш между двумя игроками в случае неоконченной партии. Первая задача сравнительно легка: надо определить, сколько может быть различных сочетаний очков; лишь одно из этих сочетаний благоприятно событию, все остальные неблагоприятны, и вероятность вычисляется очень просто. Вторая задача значительно труднее. Обе были решены одновременно в Тулузе математиком Ферма и в Париже Паскалем. По этому поводу в 1654 году между Паскалем и Ферма завязалась переписка, и, не будучи знакомы лично, они стали лучшими друзьями. Ферма решил обе задачи посредством придуманной им теории сочетаний. Решение Паскаля было значительно проще: он исходил из чисто арифметических соображений. Нимало не завидуя Ферма, Паскаль, наоборот, радовался совпадению результатов и писал: «С этих пор я желал бы раскрыть перед вами свою душу, так я рад тому, что наши мысли встретились. Я вижу, что истина одна и та же в Тулузе и в Париже».
Вот краткое решение Паскаля. Предположим, говорит Паскаль, что играют два игрока и что выигрыш считается окончательным после победы одного из них в трех партиях. Предположим, что ставка каждого игрока составляет 32 червонца и что первый уже выиграл две партии (ему не хватает одной), а второй выиграл одну (ему не хватает двух). Им предстоит сыграть еще партию. Если ее выиграет первый, он получит всю сумму, то есть 64 червонца; если второй, у каждого будет по две победы, шансы обоих станут равны, и в случае прекращения игры каждому, очевидно, надо дать поровну.
Итак, если выиграет первый, он получит 64 червонца. Если выиграет второй, то первый получит лишь 32. Поэтому, если оба согласны не играть предстоящей партии, то первый вправе сказать: 32 червонца я получу во всяком случае, даже если я проиграю предстоящую партию, которую мы согласились признать последней. Стало быть, 32 червонца мои. Что касается остальных 32 — может быть, их выиграю я, может быть, и вы; поэтому разделим эту сомнительную сумму пополам. Итак, если игроки разойдутся, не сыграв последней партии, то первому надо дать 48 червонцев, или же s, всей суммы, второму 16 червонцев, или, из чего видно, что шансы первого из них на выигрыш втрое больше, чем второго (а не вдвое, как можно было бы подумать при поверхностном рассуждении).
Несколько позднее Паскаля и Ферма к теории вероятностей обратился Хейнгенс Христиан Гюйгенс (1629–1695). До него дошли сведения об их успехах в новой области математики. Гюйгенс пишет работу «О расчетах в азартной игре». Она впервые вышла в виде приложения к «Математическим этюдам» его учителя Схоотена в 1657 году. До начала восемнадцатого века «Этюды…» оставались единственным руководством по теории вероятностей и оказали большое влияние на многих математиков.
В письме Схоотену Гюйгенс заметил: «Я полагаю, что при внимательном изучении предмета читатель заметит, что имеет дело не только с игрой, но что здесь закладываются основы очень интересной и глубокой теории». Подобное высказывание говорит о том, что Гюйгенс глубоко понимал существо рассматриваемого предмета.
Именно Гюйгенс ввел понятие математического ожидания и приложил его к решению задачи о разделении ставки при разном числе игроков и разном количестве недостающих партий и к задачам, связанным с бросанием игральных костей. Математическое ожидание стало первым основным теоретико-вероятностным понятием.
В XVII веке появляются первые работы по статистике. Они посвящены, главным образом, подсчету распределения рождений мальчиков и девочек, смертности людей различных возрастов, необходимого количества людей разных профессий, величины налогов, народного богатства, доходов. При этом применялись методы, связанные с теорией вероятностей. Подобные работы способствовали ее развитию.
Галлей при составлении таблицы смертности в 1694 году осреднял данные наблюдений по возрастным группам. По его мнению, имеющиеся отклонения «видимо, вызваны случаем», что данные не имели бы резких отклонений при «намного большем» числе лет наблюдений.
Теория вероятностей имеет огромное применение в самых различных областях. Посредством нее астрономы, например, определяют вероятные ошибки наблюдений, а артиллеристы вычисляют вероятное количество снарядов, могущих упасть в определенном районе, а страховые общества — размер премий и процентов, уплачиваемых при страховании жизни и имущества.
А во второй половине девятнадцатого столетия зародилась так называемая «статистическая физика», представляющая собой область физики, специально изучающей огромные совокупности атомов и молекул, составляющие любое вещество, с точки зрения вероятностей.
ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ СЧИСЛЕНИЕ
Задолго до Ньютона и Лейбница многие философы и математики занимались вопросом о бесконечно малых, но ограничились лишь самыми элементарными выводами. Еще древние греки употребляли в геометрических исследованиях способ пределов, посредством которого вычисляли, например, площадь круга. Особенное развитие дал этому способу величайший математик древности Архимед, открывший с его помощью множество замечательных теорем. Кеплер и в этом отношении ближе всех подошел к открытию Ньютона.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики