ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Однако его волновали научные проблемы. Помимо его старого увлечения — геометрии и проблемы цветов, которой он начал заниматься еще в 1852 году, Максвелл заинтересовался электричеством.
20 февраля 1854 года Максвелл сообщает Томсону о своем намерении «атаковать электричество». Результат «атаки» — сочинение «О Фарадеевых силовых линиях» — первое из трех основных трудов Максвелла, посвященных изучению электромагнитного поля. Слово «поле» впервые появилось в том самом письме Томсону, но ни в этом, ни в последующем сочинении, посвященном силовым линиям, Максвелл его не употребляет. Это понятие снова появится только в 1864 году в работе «Динамическая теория электромагнитного поля».
Он публикует две основные работы по созданной им теории электромагнитного поля: «О физических силовых линиях» (1861–1862 годы) и «Динамическая теория электромагнитного поля» (1864–1865 годы). За десять лет Максвелл вырос в крупнейшего ученого, творца фундаментальной теории электромагнитных явлений, ставшей, наряду с механикой, термодинамикой и статистической физикой, одним из устоев классической теоретической физики.
«Трактат по электричеству и магнетизму» — главный труд Максвелла и вершина его научного творчества. В нем он подвел итоги многолетней работы по электромагнетизму, начавшейся еще в начале 1854 года. Предисловие к «Трактату» датировано 1 февраля 1873 года. Девятнадцать лет работал Максвелл над своим основополагающим трудом!
Исследования, произведенные Максвеллом, привели его к выводу, что в природе должны существовать электромагнитные волны, скорость распространения которых в безвоздушном пространстве равна скорости света — 300 000 километров в секунду.
Возникнув, электромагнитное поле распространяется в пространстве со скоростью света, занимая все больший и больший объем. Максвелл утверждал, что волны света имеют ту же природу, что и волны, возникающие вокруг провода, в котором есть переменный электрический ток. Они отличаются друг от друга только длиной. Очень короткие волны и есть видимый свет.
«Предположение Максвелла о том, что изменения электрического поля влекут за собой возникновение потока магнитной индукции, явилось следующим шагом вперед, — пишет А.А. Коробко-Стефанов. — Таким образом, возникшее переменное электрическое поле вокруг магнитного, в свою очередь, создает переменное магнитное поле, охватывающее электрическое, которое вновь возбуждает электрическое, и т. д.
Быстропеременные электрические и магнитные поля, распространяющиеся со скоростью света, образуют электромагнитное поле. Электромагнитное поле распространяется в пространстве от точки к точке, создавая электромагнитные волны. Электромагнитное поле в каждой точке характеризуется напряженностью электрического и магнитного полей. Напряженность электрического и магнитного полей — величины векторные, так как характеризуются не только величиной, но и направлением. Векторы напряженности полей взаимно перпендикулярны и перпендикулярны к направлению распространения».
Поэтому электромагнитная волна является поперечной.
Из теории Максвелла вытекало, что электромагнитные волны возникают в том случае, если изменения напряженности электрического и магнитного полей будут происходить очень быстро.
Справедливость максвелловских представлений опытным путем доказал Генрих Герц. В восьмидесятые годы девятнадцатого века Герц приступил к изучению электромагнитных явлений, работая в аудитории длиной 14 метров и шириной 12 метров. Он обнаружил, что если расстояние приемника от вибратора менее одного метра, то характер распределения электрической силы аналогичен полю диполя и убывает обратно пропорционально кубу расстояния. Однако на расстояниях, превышающих 3 метра, поле убывает значительно медленнее и неодинаково в различных направлениях. В направлении оси вибратора действие убывает значительно быстрее, чем в направлении, перпендикулярном оси, и едва заметно на расстоянии 4 метров, тогда как в перпендикулярном направлении оно достигает расстояний, больших 12 метров.
Этот результат противоречит всем законам теории дальнодействия. Герц продолжал исследование в волновой зоне своего вибратора, поле которого он позже рассчитал теоретически. В ряде последующих работ Герц неопровержимо доказал существование электромагнитных волн, распространяющихся с конечной скоростью. «Результаты опытов, поставленных мною над быстрыми электрическими колебаниями, — писал Герц в своей восьмой статье 1888 года, — показали мне, что теория Максвелла обладает преимуществом перед всеми другими теориями электродинамики».
Поле в этой волновой зоне в различные моменты времени Герц изобразил с помощью картины силовых линий. Эти рисунки Герца вошли во все учебники электричества. Расчеты Герца легли в основу теории излучения антенн и классической теории излучения атомов и молекул.
Таким образом, Герц в процессе своих исследований окончательно и безоговорочно перешел на точку зрения Максвелла, придал удобную форму его уравнениям, дополнил теорию Максвелла теорией электромагнитного излучения. Герц получил экспериментально электромагнитные волны, предсказанные теорией Максвелла, и показал их тождество с волнами света.
В 1889 году Герц прочитал доклад «О соотношении между светом и электричеством» на 62-м съезде немецких естествоиспытателей и врачей.
Здесь он подводит итоги своих опытов в следующих словах: «Все эти опыты очень просты в принципе, но, тем не менее, они влекут за собой важнейшие следствия. Они рушат всякую теорию, которая считает, что электрические силы перепрыгивают пространство мгновенно.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики