ТОП авторов и книг ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ
Окрашивание и радужные каймы приписывали исключительно шероховатостям поверхности призмы или стекла.
Поначалу Ньютон много работал над шлифовкою увеличительных стекол и зеркал. Эти работы познакомили его опытным путем с основными законами отражения и преломления, с которыми он был уже теоретически знаком по трактатам Декарта и Джемса Грегори. Ньютон начинает серии экспериментов, о которых впоследствии сам великий ученый подробнейшим образом рассказал в своих трудах.
«В начале 1666 года, то есть тогда, когда я был занят шлифовкой оптических стекол несферической формы, я достал треугольную стеклянную призму и решил испытать с ее помощью прославленное явление цветов. С этой целью я затемнил свою комнату и проделал в ставнях небольшое отверстие с тем, чтобы через него мог проходить тонкий луч солнечного света. Я поместил призму у места входа света так, чтобы он мог преломляться к противоположной стене. Сначала вид ярких и живых красок, получавшихся при этом, приятно развлек меня. Но через некоторое время, заставив себя присмотреться к ним более внимательно, я был удивлен их продолговатой формой, в соответствии с известными законами преломления я ожидал бы увидеть их круглыми. По бокам цвета ограничивались прямыми линиями, а на концах затухание света было настолько постепенным, что было трудно точно определить, какова же их форма; она казалась даже полукруглой.
Сравнивая длину этого цветного спектра с его шириной, я выявил, что она примерно в пять раз больше. Диспропорция была столь необычна, что возбудила во мне более чем обычное любопытство, стремление выяснить, что же может быть ее причиной. Вряд ли различная толщина стекла или граница света с темнотою могли вызывать подобный световой эффект. И я решил вначале все же изучить именно эти обстоятельства и попробовал, что произойдет, если пропускать свет через стекла различной толщины, или через отверстия различных размеров, или при установлении призмы вне помещения, так, чтобы свет мог преломляться перед тем, как он сужается отверстием. Но я выяснил, что ни одно из этих обстоятельств не является существенным. Картина цветов во всех случаях была той же самой.
Тогда я подумал: не могут ли быть причиной расширения цветов какие-либо несовершенства стекла или другие непредвиденные случайности? Чтобы проверить это, я взял другую призму, подобную первой, и разместил ее так, что свет, следуя через обе призмы, мог преломляться противоположными путями, причем вторая призма возвращала свет к тому направлению, от которого первая отклоняла его. И таким образом, думал я, обычные эффекты первой призмы будут разрушены другой, а необычные усилятся за счет многократности преломлений. Оказалось, однако, что луч, рассеиваемый первой призмой в продолговатую форму, второй призмой приводился в круглую настолько четко, как если бы он вообще ни через что не проходил. Таким образом, какова бы ни была причина удлинения, оно не является следствием случайных неправильностей.
Далее я перешел к более практическому рассмотрению того, что может произвести различие угла падения лучей, идущих от различных частей Солнца. И из опыта и расчетов стало мне очевидно, что различие углов падения лучей, идущих от различных частей Солнца, не может вызвать после их пересечения расхождения на угол заметно больший, чем тот, под которым они ранее сходились, величина же этого угла не больше 31–32 минут; поэтому нужно найти иную причину, которая могла бы объяснить появление угла в два градуса сорок девять минут.
Тогда я стал подозревать, не идут ли лучи после прохождения их через призму криволинейно, и не стремятся ли они в соответствии с их большей или меньшей криволинейностью к различным частям стены. Мое подозрение усилилось, когда я припомнил, что часто видел теннисный мяч, который при косом ударе ракеткой описывает подобную кривую линию. Ибо мячу сообщается при этом как круговое, так и поступательное движения. Та сторона мяча, где оба движения согласуются, должна с большей силой давить и толкать прилежащий воздух, чем другая сторона, и, следовательно, будет возбуждать пропорционально большее сопротивление и реакцию воздуха. И по этой самой причине, если бы лучи света были шарообразными телами (гипотеза Декарта) и при их наклонном продвижении из одной среды в другую они приобрели бы круговое движение, они должны были бы испытывать большее сопротивление от омывающего их со всех сторон эфира с той стороны, где движения согласуются, и постепенно отгибались бы в другую сторону. Однако, несмотря на всю правдоподобность этого предположения, я при проверке его не наблюдал никакой кривизны лучей. И кроме того (что было достаточно для моей цели), я наблюдал, что различие между длиной изображения и диаметром отверстия, через которое проходил свет, было пропорционально расстоянию между ними.
Постепенно устраняя эти подозрения, я пришел наконец к experimentum crucis, который был таков: я взял две доски и поместил одну из них непосредственно за призмой окна, так что свет мог следовать через небольшое отверстие, проделанное в ней для этой цели, и падать на другую доску, которую я разместил на расстоянии примерно 12 футов, причем в ней также было проделано отверстие с тем, чтобы часть света могла пройти через нее. Затем я разместил за этой второй доской другую призму таким образом, что свет, пройдя через обе эти доски, мог следовать сквозь призму, снова преломляясь в ней, прежде чем он упадет на стену. Сделав так, я взял первую призму в руку и медленно повертывал ее туда и сюда, примерно вокруг оси, так что разные части изображения, падавшего на вторую доску, могли последовательно проходить через отверстие в ней, и я мог наблюдать, на какое место стены отбрасывает лучи вторая призма.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
Поначалу Ньютон много работал над шлифовкою увеличительных стекол и зеркал. Эти работы познакомили его опытным путем с основными законами отражения и преломления, с которыми он был уже теоретически знаком по трактатам Декарта и Джемса Грегори. Ньютон начинает серии экспериментов, о которых впоследствии сам великий ученый подробнейшим образом рассказал в своих трудах.
«В начале 1666 года, то есть тогда, когда я был занят шлифовкой оптических стекол несферической формы, я достал треугольную стеклянную призму и решил испытать с ее помощью прославленное явление цветов. С этой целью я затемнил свою комнату и проделал в ставнях небольшое отверстие с тем, чтобы через него мог проходить тонкий луч солнечного света. Я поместил призму у места входа света так, чтобы он мог преломляться к противоположной стене. Сначала вид ярких и живых красок, получавшихся при этом, приятно развлек меня. Но через некоторое время, заставив себя присмотреться к ним более внимательно, я был удивлен их продолговатой формой, в соответствии с известными законами преломления я ожидал бы увидеть их круглыми. По бокам цвета ограничивались прямыми линиями, а на концах затухание света было настолько постепенным, что было трудно точно определить, какова же их форма; она казалась даже полукруглой.
Сравнивая длину этого цветного спектра с его шириной, я выявил, что она примерно в пять раз больше. Диспропорция была столь необычна, что возбудила во мне более чем обычное любопытство, стремление выяснить, что же может быть ее причиной. Вряд ли различная толщина стекла или граница света с темнотою могли вызывать подобный световой эффект. И я решил вначале все же изучить именно эти обстоятельства и попробовал, что произойдет, если пропускать свет через стекла различной толщины, или через отверстия различных размеров, или при установлении призмы вне помещения, так, чтобы свет мог преломляться перед тем, как он сужается отверстием. Но я выяснил, что ни одно из этих обстоятельств не является существенным. Картина цветов во всех случаях была той же самой.
Тогда я подумал: не могут ли быть причиной расширения цветов какие-либо несовершенства стекла или другие непредвиденные случайности? Чтобы проверить это, я взял другую призму, подобную первой, и разместил ее так, что свет, следуя через обе призмы, мог преломляться противоположными путями, причем вторая призма возвращала свет к тому направлению, от которого первая отклоняла его. И таким образом, думал я, обычные эффекты первой призмы будут разрушены другой, а необычные усилятся за счет многократности преломлений. Оказалось, однако, что луч, рассеиваемый первой призмой в продолговатую форму, второй призмой приводился в круглую настолько четко, как если бы он вообще ни через что не проходил. Таким образом, какова бы ни была причина удлинения, оно не является следствием случайных неправильностей.
Далее я перешел к более практическому рассмотрению того, что может произвести различие угла падения лучей, идущих от различных частей Солнца. И из опыта и расчетов стало мне очевидно, что различие углов падения лучей, идущих от различных частей Солнца, не может вызвать после их пересечения расхождения на угол заметно больший, чем тот, под которым они ранее сходились, величина же этого угла не больше 31–32 минут; поэтому нужно найти иную причину, которая могла бы объяснить появление угла в два градуса сорок девять минут.
Тогда я стал подозревать, не идут ли лучи после прохождения их через призму криволинейно, и не стремятся ли они в соответствии с их большей или меньшей криволинейностью к различным частям стены. Мое подозрение усилилось, когда я припомнил, что часто видел теннисный мяч, который при косом ударе ракеткой описывает подобную кривую линию. Ибо мячу сообщается при этом как круговое, так и поступательное движения. Та сторона мяча, где оба движения согласуются, должна с большей силой давить и толкать прилежащий воздух, чем другая сторона, и, следовательно, будет возбуждать пропорционально большее сопротивление и реакцию воздуха. И по этой самой причине, если бы лучи света были шарообразными телами (гипотеза Декарта) и при их наклонном продвижении из одной среды в другую они приобрели бы круговое движение, они должны были бы испытывать большее сопротивление от омывающего их со всех сторон эфира с той стороны, где движения согласуются, и постепенно отгибались бы в другую сторону. Однако, несмотря на всю правдоподобность этого предположения, я при проверке его не наблюдал никакой кривизны лучей. И кроме того (что было достаточно для моей цели), я наблюдал, что различие между длиной изображения и диаметром отверстия, через которое проходил свет, было пропорционально расстоянию между ними.
Постепенно устраняя эти подозрения, я пришел наконец к experimentum crucis, который был таков: я взял две доски и поместил одну из них непосредственно за призмой окна, так что свет мог следовать через небольшое отверстие, проделанное в ней для этой цели, и падать на другую доску, которую я разместил на расстоянии примерно 12 футов, причем в ней также было проделано отверстие с тем, чтобы часть света могла пройти через нее. Затем я разместил за этой второй доской другую призму таким образом, что свет, пройдя через обе эти доски, мог следовать сквозь призму, снова преломляясь в ней, прежде чем он упадет на стену. Сделав так, я взял первую призму в руку и медленно повертывал ее туда и сюда, примерно вокруг оси, так что разные части изображения, падавшего на вторую доску, могли последовательно проходить через отверстие в ней, и я мог наблюдать, на какое место стены отбрасывает лучи вторая призма.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201