ТОП авторов и книг ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ
е. выражаться абсолютным, а не только относительным (через поведение пробной частицы) образом. Феноменологическая теория строится подобно геометрии: из совокупности аксиом выводится ряд следствий.
Аксиомы постулируются, т. е. отчасти берутся из опыта, а отчасти додумываются и не обсуждаются далее. Но в аксиомах скрыта искомая сущность и именно их надлежит подвергнуть тщательному критическому анализу. В связи с этим правомерны следующие вопросы:
— совершенство теории (хорошо ли она описывает явления в своей области?);
— полнота (все ли электрические явления ею охвачены?);
— необходимость и всеобщность (т. е. всегда и всюду справедлива).
На эти вопросы можно ответить отрицательно. Классическая теория несовершенна хотя бы потому, что она не способна описать радиационные поправки и атом водорода. Полна она или нет неизвестно. Во всяком случае допустимы иные теоретические версии, с иным спектром следствий, например, "Немаксвелловская электродинамика" [Невесский Н.Е. "Немаксвелловская электродинамика", ВИНИТИ, № 2989В94].
Необходимость теории и, следовательно, ее всеобщность ниоткуда не следуют, т. е. можно допустить, что существуют условия, при которых она не работает.
Итак, современная классическая электродинамика не безупречна. Она слишком много оставляет неопределенным. Это, с одной стороны, не позволяет выработать с ее помощью четкий критерий для разграничения возможного и невозможного, а с другой, определяет мотив для дальнейшего поиска.
Чтобы снять предъявляемые к теории претензии, т. е. довести ее до совершенства, необходимо отвлечься от чистой феноменологии и сделать шаг в сторону постижения сущности. Для этого требуется физическая модель электромагнитного взаимодействия. Но как только ставится задача создания физической модели, сразу же становится явной необходимость пересмотра основополагающих физических представлений. Действительно, в современной теории электрические заряды точечны, а пространство, их разделяющее, пусто.
На таком фундаменте трудно что-либо строить и его нужно видоизменить. Первый шаг в этом направлении сделан квантовой электродинамикой (КЭД). В ней с электрическими зарядами связана внутренняя деятельность испускание и поглощение квантов.
О форме, составе и структуре заряженных частиц КЭД умалчивает, но деятельность полагает за основу, и это главное. Физическим содержанием наполняется и поле: оно превращается в потоки квантов. Пространство, таким образом, перестает быть пустым, хотя заполняется оно не совсем понятными сущностями.
Реконструкция теоретических представлений, предпринятая КЭД, не кажется, однако, достаточной, ибо неясно, что такое кванты (а следовательно, и то, как они формируются, испускаются и поглощаются).
Квант понятие абстрактное, он лишен образного представления. Ясно, что кванты так или иначе связаны с электромагнитными волнами и, хотя их не удается сопоставить с волновыми дугами, можно все же утверждать, что они есть всплески силового поля и это важно.
Электрическое поле вроде бы наполняется собственным содержанием, т. е. превращается в "само по себе поле", но только "вроде бы", т. к. содержание это опять относительное, а не безусловное. Кванты сгустки силового поля и определяются через поведение пробного тела, попадающего в сферу их влияния.
Таким образом, шаги, сделанные КЭД, прогрессивны, но не достаточны. Следующим шагом на пути постижения сущности электричества является, как мне кажется, разработка "информационной теории электричества" (ИТЭ).
Возможны многочисленные версии ИТЭ в зависимости от принимаемых за основу исходных предпосылок. Одна из них называемая теорией эфиронного поля [Невесский Н.Е. "Теория эфиронного поля". ВИНИТИ, № 3231В93], уже вполне оформилась и на ее примере можно пояснить, о чем речь. Информационная теория электричества сразу начинает с того, что предлагает физическую модель и наполняет физическим содержанием понятия «заряд» и «поле». Заряд рассматривается ею как нечто деятельное (в ТЭП внутренняя деятельность заряженных частиц сводится к их пульсациям на комптоновской частоте). Поле представляется в виде вибраций субквантовой среды, распространяющихся со скоростью света.
Это поле физически представляет собой акустические возмущения эфира и выражается через собственные характеристики (т. е. безотносительно к пробному заряду). Вместе с тем при таком определении «поле» перестает быть «силовым», а превращается в поле «информационное».
Такое начало требует соответствующего продолжения, ибо необходимо ответить на следующий вопрос: как соотносятся между собой характеристики информационного "самого по себе поля" и «силы», определяемые через поведение пробного заряда?
Установление такого соответствия момент тонкий и неизбежный, являющийся камнем преткновения для всех теорий взаимодействия, основанных на подобных представлениях. Идеи о моделях поля высказывались не раз, разрабатывались корпускулярные, вихревые и вибрационные модели. Но это только первый шаг, второй определение соответствия между полем и поведением заряда.
Математически это делается просто: из функций, описывающих информационное поле, конструируется Лагранжиан и затем с помощью оптимизационного принципа определяются уравнения движения. Итак, заряженная частица способна воспринимать информацию и оценивать ее; конструирует из данных, представляемых информационным полем, некую величину, расцениваемую ею, как «благо», и затем стремится вести себя так, чтобы этого блага было бы больше.
Такие действия возможны при наличии у частицы способности к восприятию и предвидению, а также внутреннего стремления (или "желания").
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
Аксиомы постулируются, т. е. отчасти берутся из опыта, а отчасти додумываются и не обсуждаются далее. Но в аксиомах скрыта искомая сущность и именно их надлежит подвергнуть тщательному критическому анализу. В связи с этим правомерны следующие вопросы:
— совершенство теории (хорошо ли она описывает явления в своей области?);
— полнота (все ли электрические явления ею охвачены?);
— необходимость и всеобщность (т. е. всегда и всюду справедлива).
На эти вопросы можно ответить отрицательно. Классическая теория несовершенна хотя бы потому, что она не способна описать радиационные поправки и атом водорода. Полна она или нет неизвестно. Во всяком случае допустимы иные теоретические версии, с иным спектром следствий, например, "Немаксвелловская электродинамика" [Невесский Н.Е. "Немаксвелловская электродинамика", ВИНИТИ, № 2989В94].
Необходимость теории и, следовательно, ее всеобщность ниоткуда не следуют, т. е. можно допустить, что существуют условия, при которых она не работает.
Итак, современная классическая электродинамика не безупречна. Она слишком много оставляет неопределенным. Это, с одной стороны, не позволяет выработать с ее помощью четкий критерий для разграничения возможного и невозможного, а с другой, определяет мотив для дальнейшего поиска.
Чтобы снять предъявляемые к теории претензии, т. е. довести ее до совершенства, необходимо отвлечься от чистой феноменологии и сделать шаг в сторону постижения сущности. Для этого требуется физическая модель электромагнитного взаимодействия. Но как только ставится задача создания физической модели, сразу же становится явной необходимость пересмотра основополагающих физических представлений. Действительно, в современной теории электрические заряды точечны, а пространство, их разделяющее, пусто.
На таком фундаменте трудно что-либо строить и его нужно видоизменить. Первый шаг в этом направлении сделан квантовой электродинамикой (КЭД). В ней с электрическими зарядами связана внутренняя деятельность испускание и поглощение квантов.
О форме, составе и структуре заряженных частиц КЭД умалчивает, но деятельность полагает за основу, и это главное. Физическим содержанием наполняется и поле: оно превращается в потоки квантов. Пространство, таким образом, перестает быть пустым, хотя заполняется оно не совсем понятными сущностями.
Реконструкция теоретических представлений, предпринятая КЭД, не кажется, однако, достаточной, ибо неясно, что такое кванты (а следовательно, и то, как они формируются, испускаются и поглощаются).
Квант понятие абстрактное, он лишен образного представления. Ясно, что кванты так или иначе связаны с электромагнитными волнами и, хотя их не удается сопоставить с волновыми дугами, можно все же утверждать, что они есть всплески силового поля и это важно.
Электрическое поле вроде бы наполняется собственным содержанием, т. е. превращается в "само по себе поле", но только "вроде бы", т. к. содержание это опять относительное, а не безусловное. Кванты сгустки силового поля и определяются через поведение пробного тела, попадающего в сферу их влияния.
Таким образом, шаги, сделанные КЭД, прогрессивны, но не достаточны. Следующим шагом на пути постижения сущности электричества является, как мне кажется, разработка "информационной теории электричества" (ИТЭ).
Возможны многочисленные версии ИТЭ в зависимости от принимаемых за основу исходных предпосылок. Одна из них называемая теорией эфиронного поля [Невесский Н.Е. "Теория эфиронного поля". ВИНИТИ, № 3231В93], уже вполне оформилась и на ее примере можно пояснить, о чем речь. Информационная теория электричества сразу начинает с того, что предлагает физическую модель и наполняет физическим содержанием понятия «заряд» и «поле». Заряд рассматривается ею как нечто деятельное (в ТЭП внутренняя деятельность заряженных частиц сводится к их пульсациям на комптоновской частоте). Поле представляется в виде вибраций субквантовой среды, распространяющихся со скоростью света.
Это поле физически представляет собой акустические возмущения эфира и выражается через собственные характеристики (т. е. безотносительно к пробному заряду). Вместе с тем при таком определении «поле» перестает быть «силовым», а превращается в поле «информационное».
Такое начало требует соответствующего продолжения, ибо необходимо ответить на следующий вопрос: как соотносятся между собой характеристики информационного "самого по себе поля" и «силы», определяемые через поведение пробного заряда?
Установление такого соответствия момент тонкий и неизбежный, являющийся камнем преткновения для всех теорий взаимодействия, основанных на подобных представлениях. Идеи о моделях поля высказывались не раз, разрабатывались корпускулярные, вихревые и вибрационные модели. Но это только первый шаг, второй определение соответствия между полем и поведением заряда.
Математически это делается просто: из функций, описывающих информационное поле, конструируется Лагранжиан и затем с помощью оптимизационного принципа определяются уравнения движения. Итак, заряженная частица способна воспринимать информацию и оценивать ее; конструирует из данных, представляемых информационным полем, некую величину, расцениваемую ею, как «благо», и затем стремится вести себя так, чтобы этого блага было бы больше.
Такие действия возможны при наличии у частицы способности к восприятию и предвидению, а также внутреннего стремления (или "желания").
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303