ТОП авторов и книг ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ
Так вот, строгое определение понятия «доказательство» позволяет точно указать, какие математические принципы можно использовать, а какие нельзя.
С другой стороны, особенно важно иметь точное определение доказательства тогда, когда нужно увидить, что данное математическое утверждение недоказуемо в той или иной системе аксиом. Данная ситуация очень похожа на положение дел с построением при помощи циркуля и линейки в евклидовой геометрии: там, для того чтобы показать, что некое построение (например, трисекция угла, квадратура круга или удвоение куба То есть построение куба с объемом, вдвое большим, чем объем данного куба. — Прим. перев.
) невозможно, требуется обычно более критическое определение понятия «построение», чем для того, чтобы показать, например, что то или иное геометрическое построение с помощью циркуля и линейки действительно возможно. То же самое происходит и с доказуемостью: чтобы продемонстрировать, что данное утверждение недоказуемо в некоторой исходной системе аксиом, требуется гораздо более строгое и критическое определение самого понятия «доказательство», чем для получения соответствующего положительного результата, а именно что данное утверждение в самом деле является доказуемым при принятии той или иной аксиомы.
Загадка Гёделя
— Итак, — продолжал Фергюссон, — если задана некоторая система аксиом, то доказательство в данной системе представляет собой конечную последовательность высказываний, построенную по очень строгим правилам. При этом оказывается совсем несложно чисто механическим путем решить, является ли данная последовательность высказываний доказательством в этой системе или нет. Собственно говоря, совсем несложно даже придумать машину, которая может это делать. Гораздо труднее оказывается создать такую машину, которая могла бы решать, какие высказывания в данной системе аксиом доказуемы, а какие нет.
— Ответ, я полагаю, зависит от выбора исходной системы аксиом…
— Сейчас меня интересуют вопросы механического доказательства теорем, то есть вопросы создания таких машин, которые могли бы доказывать различные математические истины. Вот, например, мое последнее детище, — сказал Фергюссон, с гордостью указав на какое-то престранное сооружение.
Крейг и Мак-Каллох несколько минут разглядывали машину, пытаясь разгадать ее назначение.
— И что же она умеет? — спросил наконец Крейг.
— Она может доказывать различные утверждения, касающиеся положительных целых чисел, — ответил Фергюссон. — Я использую язык, в котором имеются имена для разных множеств чисел, — точнее, подмножеств положительных целых чисел. При этом существует бесконечно много таких числовых множеств, которые поддаются наименованию на этом языке. Например, у нас имеются специальные названия для множества четных чисел, для множества нечетных чисел, для множества простых чисел, для множества чисел, делящихся на 3, и т. д. — вообще, можно сказать, что практически любое множество чисел, которое могло бы представить интерес для специалиста по теории чисел, обладает своим именем на этом языке. И хотя сама совокупность числовых множеств, поддающихся описанию на этом языке, содержит бесконечно много элементов, она (по мощности. — Перев.) будет все же не больше, чем множество всех положительных чисел. С каждым положительным целым числом n оказывается связанным определенное множество чисел Аn, имеющее имя на нашем языке — это позволяет представить себе, что все именуемые множества расположены в виде последовательности А1, А2…., Аn… (Если хотите, можете вообразить себе, например, книгу с бесконечным числом страниц, причем для каждого целого положительного n на соответствующей n-й странице приведено описание того или иного множества положительных целых чисел. Тогда система An — это множество, описанное на n-й странице этой книги.)
Введем теперь математический символ Є, который означает «принадлежит» или «является членом». Для каждого числа х и произвольного числа у мы можем сформировать утверждение х Є Ау, которое означает, что х принадлежит множеству Ау. Это единственный вид утверждений, которые воспринимает моя машина. При этом задача машины состоит в том, чтобы определить, какие числа каким поддающимся описанию множествам принадлежат.
Далее, каждое утверждение х Є Ау имеет свой кодовый номер — число, которое, будучи записано в обычной десятичной системе счисления, состоит из цепочки единиц длиной х и следующей за ней цепочки нулей длиной у. Например, кодовый номер утверждения З Є А2 выглядит как 11100; кодовый номер утверждения 1 Є А5 имеет вид 100000. При этом кодовый номер утверждения х Є Ау, то есть число, состоящее из х единиц и следующих за ними у нулей, я буду обозначать символом х*у.
— Машина работает следующим образом, — продолжал Фергюссон. — Когда она обнаруживает, что число х принадлежит множеству Ау, то она отпечатывает число х*у, то есть кодовый номер утверждения х Є Ау. Если при этом машина печатает число х*у, то я говорю, что машина доказала утверждение х Є Ау. Кроме того, если машина способна напечатать число х*у, то я говорю, что утверждение х Є Ау доказуемо (с помощью моей машины).
Наконец, я знаю, что моя машина всегда точна — в том смысле, что каждое утверждение, которое можно доказать с ее помощью, является истинным.
— Минуточку, — вмешался Крейг. — Что значит «является истинным»? Какая разница между «является истинным» и «доказуемо»?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
С другой стороны, особенно важно иметь точное определение доказательства тогда, когда нужно увидить, что данное математическое утверждение недоказуемо в той или иной системе аксиом. Данная ситуация очень похожа на положение дел с построением при помощи циркуля и линейки в евклидовой геометрии: там, для того чтобы показать, что некое построение (например, трисекция угла, квадратура круга или удвоение куба То есть построение куба с объемом, вдвое большим, чем объем данного куба. — Прим. перев.
) невозможно, требуется обычно более критическое определение понятия «построение», чем для того, чтобы показать, например, что то или иное геометрическое построение с помощью циркуля и линейки действительно возможно. То же самое происходит и с доказуемостью: чтобы продемонстрировать, что данное утверждение недоказуемо в некоторой исходной системе аксиом, требуется гораздо более строгое и критическое определение самого понятия «доказательство», чем для получения соответствующего положительного результата, а именно что данное утверждение в самом деле является доказуемым при принятии той или иной аксиомы.
Загадка Гёделя
— Итак, — продолжал Фергюссон, — если задана некоторая система аксиом, то доказательство в данной системе представляет собой конечную последовательность высказываний, построенную по очень строгим правилам. При этом оказывается совсем несложно чисто механическим путем решить, является ли данная последовательность высказываний доказательством в этой системе или нет. Собственно говоря, совсем несложно даже придумать машину, которая может это делать. Гораздо труднее оказывается создать такую машину, которая могла бы решать, какие высказывания в данной системе аксиом доказуемы, а какие нет.
— Ответ, я полагаю, зависит от выбора исходной системы аксиом…
— Сейчас меня интересуют вопросы механического доказательства теорем, то есть вопросы создания таких машин, которые могли бы доказывать различные математические истины. Вот, например, мое последнее детище, — сказал Фергюссон, с гордостью указав на какое-то престранное сооружение.
Крейг и Мак-Каллох несколько минут разглядывали машину, пытаясь разгадать ее назначение.
— И что же она умеет? — спросил наконец Крейг.
— Она может доказывать различные утверждения, касающиеся положительных целых чисел, — ответил Фергюссон. — Я использую язык, в котором имеются имена для разных множеств чисел, — точнее, подмножеств положительных целых чисел. При этом существует бесконечно много таких числовых множеств, которые поддаются наименованию на этом языке. Например, у нас имеются специальные названия для множества четных чисел, для множества нечетных чисел, для множества простых чисел, для множества чисел, делящихся на 3, и т. д. — вообще, можно сказать, что практически любое множество чисел, которое могло бы представить интерес для специалиста по теории чисел, обладает своим именем на этом языке. И хотя сама совокупность числовых множеств, поддающихся описанию на этом языке, содержит бесконечно много элементов, она (по мощности. — Перев.) будет все же не больше, чем множество всех положительных чисел. С каждым положительным целым числом n оказывается связанным определенное множество чисел Аn, имеющее имя на нашем языке — это позволяет представить себе, что все именуемые множества расположены в виде последовательности А1, А2…., Аn… (Если хотите, можете вообразить себе, например, книгу с бесконечным числом страниц, причем для каждого целого положительного n на соответствующей n-й странице приведено описание того или иного множества положительных целых чисел. Тогда система An — это множество, описанное на n-й странице этой книги.)
Введем теперь математический символ Є, который означает «принадлежит» или «является членом». Для каждого числа х и произвольного числа у мы можем сформировать утверждение х Є Ау, которое означает, что х принадлежит множеству Ау. Это единственный вид утверждений, которые воспринимает моя машина. При этом задача машины состоит в том, чтобы определить, какие числа каким поддающимся описанию множествам принадлежат.
Далее, каждое утверждение х Є Ау имеет свой кодовый номер — число, которое, будучи записано в обычной десятичной системе счисления, состоит из цепочки единиц длиной х и следующей за ней цепочки нулей длиной у. Например, кодовый номер утверждения З Є А2 выглядит как 11100; кодовый номер утверждения 1 Є А5 имеет вид 100000. При этом кодовый номер утверждения х Є Ау, то есть число, состоящее из х единиц и следующих за ними у нулей, я буду обозначать символом х*у.
— Машина работает следующим образом, — продолжал Фергюссон. — Когда она обнаруживает, что число х принадлежит множеству Ау, то она отпечатывает число х*у, то есть кодовый номер утверждения х Є Ау. Если при этом машина печатает число х*у, то я говорю, что машина доказала утверждение х Є Ау. Кроме того, если машина способна напечатать число х*у, то я говорю, что утверждение х Є Ау доказуемо (с помощью моей машины).
Наконец, я знаю, что моя машина всегда точна — в том смысле, что каждое утверждение, которое можно доказать с ее помощью, является истинным.
— Минуточку, — вмешался Крейг. — Что значит «является истинным»? Какая разница между «является истинным» и «доказуемо»?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69