ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


- Как же иначе? - удивилась Алиса.
- А ты помнишь, что я тебе доказывал? - спросил Шалтай-Болтай. Всякий раз, когда зазеркальный логик в чем-то уверен, он также уверен, что не уверен в этом.
- Еще как помню! - сказала Алиса. - Только забыла, как вы это доказывали. Не могли бы вы повторить доказательство еще раз?
- Сколько угодно! - охотно согласился ШалтайБолтай.
- Возьмем любое утверждение, в истинности которого убежден зазеркальный логик. Так как он убежден в истинности этого утверждения, то (по условию 1) он заявляет, что оно истинно. Следовательно (по условию 2), он заявляет также, что не убежден в истинности этого утверждения. В свою очередь (по условию 1) отсюда следует, что он убежден, что не убежден в истинности этого утверждения.
- Вот теперь я вспомнила! - обрадовалась Алиса.
- Для большей уверенности, что ты больше не забудешь его, попрошу тебя записать мое утверждение в записную книжку под заглавием "Утверждение 1". Так Алиса и сделала. Вот что она записала:
"Утверждение 1. Всякий раз, когда зазеркальный логик убежден в чем-нибудь, он убежден, что не убежден в этом".
- Но это еще не все, - сказал Шалтай-Болтай. - Необходимо также иметь в виду, что если дано любое истинное утверждение, то зазеркальный логик убежден, что он убежден в его истинности.
- Почему? - спросила Алиса.
- Это легко доказать! - ответил Шалтай-Болтай. - Возьмем любое истинное утверждение. По условию 3 зазеркальный логик заявляет, что убежден в его истинности.
Поскольку он заявляет, что убежден в истинности истинного утверждения, то он (по условию 1) честен. Следовательно, он убежден, что убежден в истинности истинного утверждения.
- Понятно! - сказала Алиса.
- Запиши-ка себе все это в записную книжку и озаглавь "Утверждение 2", - предложил ШалтайБолтай. И Алиса записала:
"Утверждение 2. Если дано любое истинное утверждение, то зазеркальный логик убежден, что он убежден в истинности этого утверждения".
- Теперь ты понимаешь, - спросил ШалтайБолтай, - почему зазеркальный логик не может быть убежденным в истинности истинного утверждения?
- Не совсем, - призналась Алиса.
- Такое заключение нетрудно вывести из утверждения 1, утверждения 2 и условия 4, - сказал ШалтайБолтай. - Возьмем любое утверждение, в истинности которого убежден зазеркальный логик. По утверждению 1 он убежден, что не убежден в истинности этого утверждения. Но он не может быть одновременно убежденным, что он убежден в истинности этого утверждения (так как по условию 4 он не может быть убежденным в чем-то и одновременно быть убежденным в противоположном). А так как он не убежден, что убежден в истинности утверждения, то оно не может быть истинным, потому что если бы оно было истинным, то по утверждению 2 зазеркальный логик был бы убежден, что убежден в его истинности. Но в действительности он не убежден, что убежден в истинности рассматриваемого утверждения.
Следовательно, оно не может быть истинным. Итак, ты видишь, что зазеркальный логик никогда не бывает убежден в истинности любого истинного утверждения. Все утверждения, в истинности которых убежден зазеркальный логик, ложны.
Алисе пришлось изрядно поразмыслить над сказанным.
- Весьма сложное доказательство! - наконец сказала она.
- Ничего, со временем привыкнешь! - заверил ее Шалтай-Болтай.
Алиса поразмыслила еще немного.
- Мне хотелось бы спросить, - обратилась она к Шалтаю-Болтаю, обязательно ли зазеркальный логик должен быть убежден в истинности всех ложных утверждений или просто он убежден в истинности только ложных утверждений?
- Хороший вопрос, дитя мое! - одобрил ШалтайБолтай.
- И ответ на него хороший: "Да". Возьмем любое ложное утверждение. По условию 5 зазеркальный логик либо убежден в истинности этого утверждения, либо убежден в истинности противоположного утверждения. Но в истинности противоположного утверждения он не может быть убежден, так как оно истинно. Следовательно, зазеркальный логик убежден в истинности ложного утверждения.
- Как необычно!-воскликнула Алиса. - Подумать только! Зазеркальный логик убежден в истинности всех ложных и не убежден в истинности истинных утверждений!
- Совершенно верно! - сказал Шалтай-Болтай. - И это самое прекрасное в зазеркальной логике! Не могу не отметить еще одну весьма интересную ее особенность, - добавил он. - Всякий, кто убежден в истинности всех ложных и не убежден в истинности истинных утверждений и честно выражает свои убеждения, повторяю, всякий, кто придерживается таких убеждений, удовлетворяет пяти основным условиям, характеризующим зазеркальных логиков.
- Почему? - спросила Алиса.
- О, это очень легко доказать! - ответил ШалтайБолтай. Представим себе абсолютно честного человека, который убежден в истинности тех и только тех утверждений, которые ложны. Так как он честен, то, разумеется, удовлетворяет условию 1. А как обстоит дело с условием 2? Предположим, этот человек заявляет, что некоторое утверждение истинно. Поскольку он честен, этот человек действительно убежден в истинности того утверждения, .о котором идет речь. Следовательно, неверно, что он не убежден в истинности утверждения. Вместе с тем этот человек убежден в истинности всего, что ложно, даже если речь идет о ложных представлениях о его собственных убеждениях! Таким образом, неверно, что он не убежден в истинности утверждения, а, так как он убежден в истинности всего, что ложно, он должен быть убежден в ложном факте, состоящем в том, будто он не убежден в истинности утверждения. Иначе говоря, наш честный человек убежден, что он не убежден в истинности утверждения. А так как он убежден, что не убежден в истинности утверждения, то он заявляет, что не убежден в его истинности (напоминаю, что речь идет о честном человеке).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики