ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


Д. Б.
Б) Т. жидкостей. Если слой жидкости движется по другому неподвижному жидкому слою, то между ними, вследствие взаимного притяжения частиц обоих слоев, обнаруживается трение, действие которого будет заключаться в том, что скорость текущего слоя уменьшается, а слой, остававшийся неподвижным, начнет двигаться в ту же сторону, что и другой. Если слой жидкости течет с некоторой скоростью v по другому, тоже двигающемуся со скоростью, большей или меньшей, чем v, направленной в одну сторону с первой, то движение одного слоя будет замедлено, а другое ускорено, как замедляющая сила, в другом как ускоряющая. Если один слой двигался по другому, который сам движется по направлению, противоположному первому, то результатом Т. было бы замедление обоих течений. Течение жидкости по поверхности твердого тела также сопровождается Т., но если это твердое тело вполне смачивается жидкостью, то весьма тонкий ее слой удерживается твердым телом и становится неподвижным, и поэтому жидкость, текущая по такому смоченному твердому телу, течет как бы по жидкости, и если такое твердое тело имеет форму трубки, то жидкость протекает как бы по жидкой трубке. Величина Т. пропорциональна поверхности жидкости, соприкасающейся с твердой стенкой, и скорости течения параллельно поверхности стенки; сверх того величина Т. какойлибо жидкости зависит от свойств твердого тела, по поверхности которого течет жидкость, не вполне смачивающая это тело. Таким образом, обозначая величину скорости течения по неподвижному слою буквой v, а величину поверхности через s, можно выразить замедляющее или ускоряющее действие Т. произведением kvs, где k есть так называемый коэффициент Т. (внешнего). Жидкость, текущую в цилиндрической трубке, можно мысленно разделить на произвольно большое число тонкостенных жидких цилиндров, имеющих одну общую ось, и движущихся один в другом. Прилегающий к внутренней стенке трубки жидкий цилиндр будет несколько задержан в своем движении, и сам замедлит движение следующего внутреннего, более близкого к оси жидкого цилиндра, и т. д., так что скорость движения жидкости в трубке будет различна в некотором поперечном круглом сечении трубки, замедляясь от центра к окружности. В том случае, когда внутренняя поверхность твердой трубки вполне смачивается жидкостью, можно принимать коэффициент внешнего Т. бесконечно великим и прилипающий к этой поверхности чрезвычайно тонкостенный жидкий цилиндр неподвижным, так что жидкость течет как бы в жидком цилиндре, а потому скорость ее истечения обусловливается лишь коэффициентом внутреннего Т. (жидкости о ту же жидкость), длиной трубки (от длины зависит поверхность Т.), ее радиусом и разностью гидростатических давлений в начале и в конце трубки.
Теоретические соображения, основанные на выше высказанных положениях, привели к следующему алгебраическому выражению величины скорости v истечения жидкости, имеющей коэффициент внутреннего Т. k, из цилиндрической трубки, длиной 1 миллим. при радиусе сечения, равном r, и разности давлений в начале и конце трубки р1р2:.
Здесь все величины подлежат непосредственному измерению, кроме коэффициента k, но удобнее определять вместо скорости v истечения – объем жидкости, протекшей по трубке в продолжение некоторого времени, или время, необходимое для истечения определенного объема жидкостей, из чего просто вычисляемая и скорость. Гаген и Пуазейль (1842) делали опыты над истечением жидкостей через волосные трубки еще до развития теории этого явления; результаты, найденные первым из них, были вполне подтверждены еще более точными исследованиями второго. Прибор Пуазейля состоял из стеклянного шарика с двумя диаметрально противоположными трубками; нижняя, отогнутая на прямой угол. соединялась с волосными трубками различных размеров. С открытого конца верхней трубки В производилось сжатым воздухом давление на жидкость, наполнявшую шарик, измеряемое высотой водяного столба, доходившей иногда до 41 метра, иногда же меньшей, чем 1 метр. Между чертами, сделанными на трубках выше и ниже шарика, заключался объем жидкости, который при различных давлениях был прогоняем чрез различные волосные трубки, при чем определялось всякий раз время (число секунд), для этого необходимое. Так как давление на жидкость и размеры трубки измерялись миллиметрами, то и количество истекающей жидкости определялось куб. мм. Пуазейль нашел величину коэффициента внутреннего Т. для воды при температуре 0° равною 0, 0001816. Определяя для трубок одного и того же поперечного сечения, но различной длины, время, нужное для истечения одного и того же количества воды при одной и той же температуре, Пуазейль нашел, что времена пропорциональны длинам трубок. Подобным образом он нашел, что времена истечения пропорциональны четвертой степени диаметров или радиусов трубки (т. е. ее канала). Вообще, количество вытекающей воды в некоторое время t может быть вычислено из выражения следующего вида, найденного Пуазейлем (v – объем жидкости, k – коэффициент, зависящий от внутреннего Т. жидкости, Р – давление, под которым течет вода по горизонтальной трубке; имеющей длину 1 и радиус канала r, t – продолжительность истечения). Величины t, вычисленные по этой формуле. превосходно согласуются с величинами, найденными из непосредственных наблюдений, но во всех опытах длина трубки была значительна относительно поперечника ее. Так, трубка с поперечником в 0, 252 мм. должна иметь не менее 54 мм.; при давлении столба около 1500 мм. т.е. l с лишком в 400 раз более r. Математическая теория дает выражение где r есть радиус трубки, а h – коэффициент внутреннего Т.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики