ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


Емкость
Несмотря на впечатляющую емкость человеческой коры головного мозга, разумные машины смогут ее намного превзойти. Размер нашего мозга ограничивается несколькими биологическими факторами, среди них – соотношение размера черепа ребенка и диаметр таза матери, большие метаболистические затраты на поддержание мозга (мозг составляет порядка 2% веса тела и при этом потребляет 20% вдыхаемого кислорода), низкое быстродействие нейронов. С другой стороны, мы можем создавать разумные системы памяти любых размеров, заложив свою задумку в отдельные атрибуты дизайна. Возможно, несколько десятилетий спустя емкость человеческого мозга будет нам казаться очень скромной.
Предскажу несколько способов увеличения емкости памяти будущих разумных машин. Во-первых, сделав иерархическую систему памяти более глубокой, мы добьемся более глубокого понимания – умения распознавать сигналы высокого порядка. Увеличение емкости отдельных зон поможет разумной машине запоминать больше подробностей, проявлять более высокую точность восприятия (подобно тому, как незрячий человек обладает повышенной осязательной и слуховой чувствительностью). Добавление новых ощущений и сенсорной иерархии позволит устройству создавать более качественные модели внешнего мира. К этому мы еще вернемся ниже.
Возникает закономерный вопрос: существует ли предел того, как далеко может зайти разумная система памяти и в каких измерениях? Предположительно, на какой-то стадии устройство станет слишком громоздким, чтобы быть по-настоящему полезным, или оно начнет давать сбои, приблизившись к своему теоретическому пределу. Возможно, человеческий мозг уже приблизился к своему максимальному теоретическому размеру, хотя я считаю это маловероятным. Человеческий мозг увеличился относительно недавно в ходе эволюции, и ничто не наводит на мысль о том, что мы вышли на стабильный максимальный уровень. Каким бы ни был лимит емкости разумной системы памяти, человеческий мозг почти наверняка до него и близко не дотягивает.
Еще один способ понять, каким образом могли бы быть полезны разумные системы памяти, – проанализировать пределы человеческих возможностей. Эйнштейн, вне всякого сомнения, был очень умен, но его мозг был всего лишь мозгом. Можно предположить, что его выдающийся ум был последствием физических отличий его мозга от типичного. Эйнштейн был уникален потому, что человечество нечасто рождает гениев. А создавая мозг из кремния, мы можем воплотить в жизнь что угодно. Кремниевый мозг может располагать таким же уровнем интеллекта, как и Эйнштейн, или даже превзойти его. С другой стороны, лучше познать возможные измерения разума нам помогут умственно отсталые люди, проявляющие фотографическую память или способности осуществлять в уме сложные математические вычисления. Совершенно нетипичный мозг таких индивидов, несмотря ни на что, является мозгом, неокортекс которого работает по тому же алгоритму. Если нетипичный мозг обладает невероятными способностями к запоминанию, то теоретически мы можем добавить эти способности нашему искусственному мозгу. Подобные экстремальные проявления человеческих умственных способностей не только показывают, что можно было бы воссоздать, но и указывают направления, в которых мы могли бы превзойти наилучшие проявления работы человеческого мозга.
Реплицируемость
Каждый новый органический мозг растет и обучается на протяжении десятилетий человеческой жизни. Каждый человек на собственном опыте познает основы координации конечностей и мышечных групп, осваивает азы и передвижения, изучает общие свойства множества объектов окружающей среды, животных, других людей, названия предметов и структур речи, семейные и общественные правила. Как только основа заложена, начинаются годы формального обучения. Каждый человек в течении своей жизни проходит множество кругов обучения. Несмотря на то что путь этот несметное количество раз повторялся другими людьми, модель мира в коре головного мозга каждого из нас создается в индивидуальном порядке.
Разумным машинам нет необходимости проходить подобную спиралевидную кривую обучения, поскольку чипы и другие единицы хранения информации можно реплицировать бесконечно, а сохраненные данные – копировать. В этом отношении разумные машины подлежат такой же репликации, как и программное обеспечение. Как только прототип системы достаточно обучен, его можно скопировать столько раз, сколько нам потребуется. Процессы разработки дизайна, настройки системного обеспечения, обучения, испытания и выявления ошибок с тем, чтобы усовершенствовать систему памяти умной машины, могут длиться годами. Но, как только мы получим конечный продукт, его можно будет запускать в массовое производство. Как я уже отмечал, мы сможем обеспечить возможность последующего обучения для копий или обойтись без таковой. Для некоторых приложений мы захотим ограничить возможности с тем, чтобы разумные машины работали известным и испытанным нами способом. Как только «умный» автомобиль усвоит все, что ему положено «знать», мы примем меры, чтобы у него не образовались плохие привычки или не закрепились самостоятельно найденные ложные аналогии. Мы захотим, чтобы все машины подобного строения вели себя одинаково. Но вот для других приложений может оказаться целесообразной возможность постоянного обучения мозгоподобных систем памяти. Например, разумной машине, созданной для того, чтобы искать математические доказательства, понадобится способность обучаться на основе опыта, применять старые решения для новых проблем, ей желательно быть универсально гибкой и открытой.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики