ТОП авторов и книг ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ
Хорошо усвоенные последовательности сигналов в моем доме обрабатываются на уровне нижних зон зрительной, соматосенсорной и моторной иерархии. Я знаю комнату настолько хорошо, что могу передвигаться по ней даже в кромешной тьме. Благодаря тому, что я хорошо знаю обстановку вокруг меня, большая часть моего неокортекса свободна и может размышлять о мозге и написании книг. В то же время если бы я находился в незнакомой мне комнате, особенно в такой, подобной которой я никогда не встречал, то мне не только пришлось бы постоянно присматриваться, куда идти. Неожиданные сигналы мощным потоком ринулись бы к верхним областям коры головного мозга. Чем больше мой сенсорный опыт не соответствует заученным последовательностям, тем больше ошибок будет возникать. В такой непривычной ситуации я не смогу думать о мозге, поскольку большая часть коры головного мозга будет занята проблемами ориентирования в комнате. С подобными ощущениями сталкиваются люди, сошедшие с трапа самолета в незнакомой стране. Дороги похожи на те, к которым вы привыкли, автомобили придерживаются левой стороны, язык, на котором все общаются, вам непонятен, а поиск туалета может стать сверхзадачей для всей коры головного мозга. Даже не пытайтесь готовиться к публичному выступлению, разгуливая по незнакомой стране.
Ощущение внезапного понимания (момент озарения) можно объяснить в рамках модели. Представьте, что вы смотрите на неоднозначную картинку. Пятна чернил и какие-то линии ничего вам не напоминают. Полнейшая бессмыслица. Когда мозг не может найти воспоминания, соответствующего полученному сигналу, человек пребывает в замешательстве. Ваши глаза блуждают по картинке. Входные сигналы поднялись на самый верх иерархии. Высшие зоны выдвигают множество самых разных гипотез, но, как только прогнозы начинают опускаться вниз по иерархии, каждая из гипотез конфликтует с входными сигналами, и мозг вынужден начинать все сначала. На протяжении всего состояния замешательства ваш мозг полностью поглощен тем, что пытается понять картинку. Наконец он формирует прогноз, который оказывается правильным. Когда это происходит, прогноз, сформированный в верхней зоне коры головного мозга, стремительно спускается вниз. Менее чем за секунду каждая зона получает последовательность, соответствующую полученным данным. Ни одна ошибка больше не транслируется к верхним зонам иерархии. Вы понимаете картинку и вместо точек и пятен видите далматинца (рис. 6.12).
На что способна обратная связь?
Десятки лет нам было известно, что связи в коре головного мозга являются взаимными. Если у зоны А есть проекция в зоне Б, то у зоны Б есть проекция в зоне А. Часто аксонов обратной связи оказывается больше, чем волокон прямой связи. Несмотря на то что все признают существование такого феномена, считается, что обратная связь играет второстепенную, или «модуляторную», роль в работе мозга. Мысль о том, что сигнал обратной связи на может постоянно и точно активизировать различные группы клеток слоя 2, не имеет большой поддержки в рядах нейробиологов.
Почему так? Частично потому, что, как я уже упоминал, если вы не считаете функцию прогнозирования центральной функцией головного мозга, то не возникает особой необходимости обращать внимание на обратную связь. Если вы предполагаете, что информация движется прямолинейно, к моторной системе, зачем вам эта обратная связь? Еще одна причина игнорирования обратной связи – то, что сигнал обратной, связи широко распространяется в слое 1. Интуитивно мы ожидаем, что сигнал, рассеянный в большой зоне, будет оказывать очень слабое влияние на большое количество нейронов. В самом деле, у мозга есть несколько таких модуляторных сигналов, которые не оказывают влияния на отдельные нейроны, зато меняют общие характеристики (например, возбудимость).
Рис. 6.12. Вы видите далматинца?
И последняя причина игнорирования обратной связи обусловлена тем, как многие нейробиологи представляют себе работу нейронов. У типичных нейронов имеются тысячи или даже десятки тысяч синапсов. Одни из них расположены ближе к телу клетки, другие – дальше. Синапсы, расположенные ближе к телу клетки, оказывают сильное влияние на ее импульсацию. Дюжина активных синапсов, расположенных у тела клетки, может заставить ее генерировать потенциал действия – электрический разряд. В этом не ничего нового. Тем не менее большинство синапсов находятся вдали от тела клетки. Они разбросаны по разветвленной структуре дендритов клетки. Поскольку эти синапсы расположены далеко от тела клетки, ученые склонны полагать, что импульс, пришедший на один из этих синапсов, будет очень слабо либо вообще не будет влиять на активность клетки. Импульс с отдаленного синапса рассеется по дороге, не достигнув тела клетки.
Как правило, информация, поднимающаяся вверх по иерархии коры головного мозга, передается по синапсам, расположенным близко к телу клетки. В этом случае сведения с большей вероятностью будут успешно передаваться от зоны к зоне. Как правило, обратная информация, поступающая вниз по иерархии коры головного мозга, передается по синапсам, расположенным дальше от тела клетки. Клетки слоев 2, 3 и 5 посылают дендриты в слой 1 и формируют там много синапсов. Слой 1 представляет собой совокупность синапсов, но все они значительно отдалены от тел клеток слоев 2, 3 и 5. Более того, каждая отдельная клетка слоя 2 формирует чрезвычайно мало синапсов с каждым отдельным волокном обратной связи (если формирует их вообще). Следовательно, некоторые ученые могут возразить по поводу того, что непродолжительный сигнал в слое 1 может вызвать упорядоченное возбуждение группы клеток слоев 2, 3 и 5, однако моя теория базируется именно на этом предположении.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
Ощущение внезапного понимания (момент озарения) можно объяснить в рамках модели. Представьте, что вы смотрите на неоднозначную картинку. Пятна чернил и какие-то линии ничего вам не напоминают. Полнейшая бессмыслица. Когда мозг не может найти воспоминания, соответствующего полученному сигналу, человек пребывает в замешательстве. Ваши глаза блуждают по картинке. Входные сигналы поднялись на самый верх иерархии. Высшие зоны выдвигают множество самых разных гипотез, но, как только прогнозы начинают опускаться вниз по иерархии, каждая из гипотез конфликтует с входными сигналами, и мозг вынужден начинать все сначала. На протяжении всего состояния замешательства ваш мозг полностью поглощен тем, что пытается понять картинку. Наконец он формирует прогноз, который оказывается правильным. Когда это происходит, прогноз, сформированный в верхней зоне коры головного мозга, стремительно спускается вниз. Менее чем за секунду каждая зона получает последовательность, соответствующую полученным данным. Ни одна ошибка больше не транслируется к верхним зонам иерархии. Вы понимаете картинку и вместо точек и пятен видите далматинца (рис. 6.12).
На что способна обратная связь?
Десятки лет нам было известно, что связи в коре головного мозга являются взаимными. Если у зоны А есть проекция в зоне Б, то у зоны Б есть проекция в зоне А. Часто аксонов обратной связи оказывается больше, чем волокон прямой связи. Несмотря на то что все признают существование такого феномена, считается, что обратная связь играет второстепенную, или «модуляторную», роль в работе мозга. Мысль о том, что сигнал обратной связи на может постоянно и точно активизировать различные группы клеток слоя 2, не имеет большой поддержки в рядах нейробиологов.
Почему так? Частично потому, что, как я уже упоминал, если вы не считаете функцию прогнозирования центральной функцией головного мозга, то не возникает особой необходимости обращать внимание на обратную связь. Если вы предполагаете, что информация движется прямолинейно, к моторной системе, зачем вам эта обратная связь? Еще одна причина игнорирования обратной связи – то, что сигнал обратной, связи широко распространяется в слое 1. Интуитивно мы ожидаем, что сигнал, рассеянный в большой зоне, будет оказывать очень слабое влияние на большое количество нейронов. В самом деле, у мозга есть несколько таких модуляторных сигналов, которые не оказывают влияния на отдельные нейроны, зато меняют общие характеристики (например, возбудимость).
Рис. 6.12. Вы видите далматинца?
И последняя причина игнорирования обратной связи обусловлена тем, как многие нейробиологи представляют себе работу нейронов. У типичных нейронов имеются тысячи или даже десятки тысяч синапсов. Одни из них расположены ближе к телу клетки, другие – дальше. Синапсы, расположенные ближе к телу клетки, оказывают сильное влияние на ее импульсацию. Дюжина активных синапсов, расположенных у тела клетки, может заставить ее генерировать потенциал действия – электрический разряд. В этом не ничего нового. Тем не менее большинство синапсов находятся вдали от тела клетки. Они разбросаны по разветвленной структуре дендритов клетки. Поскольку эти синапсы расположены далеко от тела клетки, ученые склонны полагать, что импульс, пришедший на один из этих синапсов, будет очень слабо либо вообще не будет влиять на активность клетки. Импульс с отдаленного синапса рассеется по дороге, не достигнув тела клетки.
Как правило, информация, поднимающаяся вверх по иерархии коры головного мозга, передается по синапсам, расположенным близко к телу клетки. В этом случае сведения с большей вероятностью будут успешно передаваться от зоны к зоне. Как правило, обратная информация, поступающая вниз по иерархии коры головного мозга, передается по синапсам, расположенным дальше от тела клетки. Клетки слоев 2, 3 и 5 посылают дендриты в слой 1 и формируют там много синапсов. Слой 1 представляет собой совокупность синапсов, но все они значительно отдалены от тел клеток слоев 2, 3 и 5. Более того, каждая отдельная клетка слоя 2 формирует чрезвычайно мало синапсов с каждым отдельным волокном обратной связи (если формирует их вообще). Следовательно, некоторые ученые могут возразить по поводу того, что непродолжительный сигнал в слое 1 может вызвать упорядоченное возбуждение группы клеток слоев 2, 3 и 5, однако моя теория базируется именно на этом предположении.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92