ТОП авторов и книг ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ
и Н.Чернавских сделана оценка вероятности случайного формирования нового биологически значимого белка (кодируемого ДНК) с учетом того, что в белке есть активный центр, в котором замены аминокислот практически недопустимы, и участки, свойства которых не сильно меняются при многих аминокислотных заменах. Полученная оценка указывает на то, что случайное формирование белка было вполне вероятно в процессе эволюции.
В чрезвычайно интересных работах С.Кауфмана с сотрудниками из Пенсильванского университета исследуется эволюция автоматов, состоящих из соединенных между собой логических элементов. Отдельный автомат можно рассматривать как модель молекулярно-генетической системы управления живой клетки, причем каждый логический элемент интерпретируется как регулятор синтеза определенного фермента. Модели Кауфмана позволяют сделать ряд предсказаний относительно «программ» жизнедеятельности клетки. В частности, продемонстрировано, что для одновременного обеспечения устойчивости и гибкости программы число входов логических элементов должно быть ограничено определенным интервалом, а именно составлять величину примерно равную 2–3.
Согласованность и эффективность работы элементов биологических организмов наводит на мысль: а можно ли использовать принципы биологической эволюции для оптимизации практически важных для человека систем? Одна из первых схем эволюционной оптимизации была предложена в 60-е годы П.Фогелем, А.Оуэнсом и М.Уолшем; эффективность этой схемы на практике была продемонстрирована И.Букатовой из Москвы. Также в последнее время проявляется большой интерес к исследованию и использованию генетического алгоритма, предложенного Дж. Холландом из Мичиганского университета. Этот генетический алгоритм предназначен для решения задач комбинаторной оптимизации, то есть оптимизации структур, задаваемых векторами, компоненты которых принимают дискретные значения. Схема генетического алгоритма практически совпадает с таковой в модели квазивидов, за исключением того, что в генетическом алгоритме механизм изменчивости помимо точечных мутаций включает в себя кроссинговер – скрещивание структур. Генетический алгоритм естественно «вписывается» в параллельную многопроцессорную вычислительную архитектуру: каждой «особи» популяции можно поставить в соответствие отдельный процессор, поэтому возможно построение специализированных компьютеров, эффективно реализующих генетический алгоритм.
7.6.2. Нейронные сети и нейрокомпьютер
В последнее время активно ведутся также работы по построению моделей обработки информации в нервной системе. Большинство моделей основывается на схеме формального нейрона У.МакКаллока и У.Питтса, согласно которой нейрон представляет собой пороговый элемент, на входах которого имеются возбуждающие и тормозящие синапсы; в этом нейроне определяется взвешенная сумма входных сигналов (с учетом весов синапсов), а при превышении этой суммой порога нейрона вырабатывается выходной сигнал.
В моделях уже построены нейронные сети, выполняющие различные алгоритмы обработки информации: ассоциативная память, категоризация (разбиение множества образов на кластеры, состоящие из подобных друг другу образов), топологически корректное отображение одного пространства переменных в другое, распознавание зрительных образов, инвариантное относительно деформаций и сдвигов в пространстве решение задач комбинаторной оптимизации. Подавляющее число работ относится к исследованию алгоритмов нейросетей с прагматическими целями.
Предполагается, что практические задачи будут решаться нейрокомпьютерами – искусственными нейроподобными сетями, созданными на основе микроэлектронных вычислительных систем. Спектр задач для разрабатываемых нейрокомпьютеров достаточно широк: распознавание зрительных и звуковых образов, создание экспертных систем и их аналогов, управление роботами, создание нейропротезов для людей, потерявших слух или зрение. Достоинства нейрокомпьютеров – параллельная обработка информации и способность к обучению.
Несмотря на чрезвычайную активность исследований по нейронным сетям и нейрокомпьютерам, многое в этих исследованиях настораживает. Ведь изучаемые алгоритмы выглядят как бы «вырванным куском» из общего осмысления работы нервной системы. Часто исследуются те алгоритмы, для которых удается построить хорошие модели, а не те, что наиболее важны для понимания свойств мышления, работы мозга и для создания систем искусственного интеллекта. Задачи, решаемые этими алгоритмами, оторваны от эволюционного контекста, в них практически не рассматривается, каким образом и почему возникли те или иные системы обработки информации. Настораживает также чрезмерная упрощенность понимания работы нейронных сетей, при котором нейроны осмыслены лишь как суммирующие пороговые элементы, а обучение сети происходит путем модификации синапсов. Ряд исследователей, правда, рассматривает нейрон как значительно более сложную систему обработки информации, предполагая, что основную роль в обучении играют молекулярные механизмы внутри нейрона. Все это указывает на необходимость максимально полного понимания работы биологических систем обработки информации и свойств организмов, обеспечиваемых этими системами. Одним из важных направлений исследований, способствующих такому пониманию, наверное, может быть анализ того, как в процессе биологической эволюции возникали «интеллектуальные» свойства биологических организмов.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
В чрезвычайно интересных работах С.Кауфмана с сотрудниками из Пенсильванского университета исследуется эволюция автоматов, состоящих из соединенных между собой логических элементов. Отдельный автомат можно рассматривать как модель молекулярно-генетической системы управления живой клетки, причем каждый логический элемент интерпретируется как регулятор синтеза определенного фермента. Модели Кауфмана позволяют сделать ряд предсказаний относительно «программ» жизнедеятельности клетки. В частности, продемонстрировано, что для одновременного обеспечения устойчивости и гибкости программы число входов логических элементов должно быть ограничено определенным интервалом, а именно составлять величину примерно равную 2–3.
Согласованность и эффективность работы элементов биологических организмов наводит на мысль: а можно ли использовать принципы биологической эволюции для оптимизации практически важных для человека систем? Одна из первых схем эволюционной оптимизации была предложена в 60-е годы П.Фогелем, А.Оуэнсом и М.Уолшем; эффективность этой схемы на практике была продемонстрирована И.Букатовой из Москвы. Также в последнее время проявляется большой интерес к исследованию и использованию генетического алгоритма, предложенного Дж. Холландом из Мичиганского университета. Этот генетический алгоритм предназначен для решения задач комбинаторной оптимизации, то есть оптимизации структур, задаваемых векторами, компоненты которых принимают дискретные значения. Схема генетического алгоритма практически совпадает с таковой в модели квазивидов, за исключением того, что в генетическом алгоритме механизм изменчивости помимо точечных мутаций включает в себя кроссинговер – скрещивание структур. Генетический алгоритм естественно «вписывается» в параллельную многопроцессорную вычислительную архитектуру: каждой «особи» популяции можно поставить в соответствие отдельный процессор, поэтому возможно построение специализированных компьютеров, эффективно реализующих генетический алгоритм.
7.6.2. Нейронные сети и нейрокомпьютер
В последнее время активно ведутся также работы по построению моделей обработки информации в нервной системе. Большинство моделей основывается на схеме формального нейрона У.МакКаллока и У.Питтса, согласно которой нейрон представляет собой пороговый элемент, на входах которого имеются возбуждающие и тормозящие синапсы; в этом нейроне определяется взвешенная сумма входных сигналов (с учетом весов синапсов), а при превышении этой суммой порога нейрона вырабатывается выходной сигнал.
В моделях уже построены нейронные сети, выполняющие различные алгоритмы обработки информации: ассоциативная память, категоризация (разбиение множества образов на кластеры, состоящие из подобных друг другу образов), топологически корректное отображение одного пространства переменных в другое, распознавание зрительных образов, инвариантное относительно деформаций и сдвигов в пространстве решение задач комбинаторной оптимизации. Подавляющее число работ относится к исследованию алгоритмов нейросетей с прагматическими целями.
Предполагается, что практические задачи будут решаться нейрокомпьютерами – искусственными нейроподобными сетями, созданными на основе микроэлектронных вычислительных систем. Спектр задач для разрабатываемых нейрокомпьютеров достаточно широк: распознавание зрительных и звуковых образов, создание экспертных систем и их аналогов, управление роботами, создание нейропротезов для людей, потерявших слух или зрение. Достоинства нейрокомпьютеров – параллельная обработка информации и способность к обучению.
Несмотря на чрезвычайную активность исследований по нейронным сетям и нейрокомпьютерам, многое в этих исследованиях настораживает. Ведь изучаемые алгоритмы выглядят как бы «вырванным куском» из общего осмысления работы нервной системы. Часто исследуются те алгоритмы, для которых удается построить хорошие модели, а не те, что наиболее важны для понимания свойств мышления, работы мозга и для создания систем искусственного интеллекта. Задачи, решаемые этими алгоритмами, оторваны от эволюционного контекста, в них практически не рассматривается, каким образом и почему возникли те или иные системы обработки информации. Настораживает также чрезмерная упрощенность понимания работы нейронных сетей, при котором нейроны осмыслены лишь как суммирующие пороговые элементы, а обучение сети происходит путем модификации синапсов. Ряд исследователей, правда, рассматривает нейрон как значительно более сложную систему обработки информации, предполагая, что основную роль в обучении играют молекулярные механизмы внутри нейрона. Все это указывает на необходимость максимально полного понимания работы биологических систем обработки информации и свойств организмов, обеспечиваемых этими системами. Одним из важных направлений исследований, способствующих такому пониманию, наверное, может быть анализ того, как в процессе биологической эволюции возникали «интеллектуальные» свойства биологических организмов.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103