ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

д. до бесконечности. На практике это выражается в приобретении опыта конструирования схем на примерах решения головоломных, чисто математических задач. В результате очень часто при ответе на какой-нибудь вопрос из практики математик, как фокусник из рукава, вытаскивает нужную схему и вместе с ней решение практической задачи.
Наконец, в математике нужно постоянно придумывать принципиально новые схемы моделей. Иногда – при редкой удаче – это удается сделать, так сказать, «из головы». Но, как правило, эти схемы приходится с большим трудом извлекать из реальных моделей. Каждый раз это – крупный успех, знаменующий скачок в развитии математики, открывающий новое поле работы. Поэтому для развития математики необходимо постоянное обращение к практике.
В последнее время широко распространилось мнение, что внедрение в практику компьютеров резко изменило принципы взаимоотношений математики и других наук. На самом деле это мнение основано на недоразумении. Компьютеризация никак на эти принципы не повлияла. Она лишь сделала безнадежно устаревшими многие излюбленные схемы моделей и позволила разработать другие, более эффективные. В истории математики так происходило уже много раз, и появление компьютеров лишь направило этот процесс по новому пути.
Следует сказать, что та или иная конкретная наука вполне может существовать и даже процветать и без разработанных в математике моделей. Примером являются биология (в которую математические модели только начали проникать) и эстетика (где математика еще не используется). Тот факт, что разработанные в математике схемы моделей – так уж сложилось исторически – ориентированы в первую очередь только на «точные» науки естествознания, является основным дефектом современной математики. Одной из ее первоочередных задач должно быть осмысление «гуманитарных» моделей и создание их общей теории. Эта теория, по-видимому, будет совсем не похожа на привычные математические схемы и, во всяком случае, не будет иметь вид формального исчисления. Основные идеи этой будущей теории не должны заимствоваться из уже имеющихся в математике принципов, а должны возникать из конкретного анализа моделей гуманитарных наук.
Известное противопоставление «физиков» и «лириков» отражает существование двух дополнительных равноправных способов освоения фактов реального мира – рационалистического, выражающегося в системе наук, и эмоционального, выражающегося в системе искусств. Попытки исследования моделей искусства делаются ныне в рамках кибернетики (это так называемые «кибернетические теории искусства»), но их общим дефектом является стремление к дурно понятой «математизации». На самом же деле и здесь общие принципы должны не привноситься извне, а возникать на базе анализа конкретного материала той или иной области человеческой деятельности. В отношении многих математических понятий утверждение, что они являются схемами каких-то моделей, возражений не вызывает. Например, общеизвестно, что уравнение второго порядка с постоянными коэффициентами – это схема всех моделей колебательного движения, в какой бы конкретной ситуации они не возникали.
Однако, дискуссию вызывает вопрос, как в эту концепцию входит понятие числа. Это действительно трудный вопрос, потому что возникновение понятия числа столь древнее явление, что едва ли остались следы, как люди пришли к этому понятию, т. е. в результате абстрагирования каких моделей оно возникло… Но оказывается, что это не совсем так – следы остались!
Например, они обнаруживаются в японском языке. В этом языке существуют специальные группы числительных, скажем, для круглых предметов, совсем другие числительные для длинных предметов, совсем другие числительные для живых предметов и так далее. С точки зрения, европейской грамматики это оформляется, сейчас, правда, не как различные числительные, а как одни и те же числительные, к которым прибавляются различные суффиксы. Но это вопрос лишь описания этого языкового явления. Можно сделать вывод, что система японских числительных представляет собой некоторый рудимент хода мыслей, в котором люди пришли к абстрактному понятию числа и, где-то на самом первоначальном уровне еще питекантропов, для арбузов была одна система числительных, для дынь – другая, для палок – третья, для людей – четвертая. Конечно, это система далеко не уходила – раз, два, три и все, но, во всяком случае, для каждого набора предметов были собственные слова для их счета. Потом постепенно было замечено, что, можно использовать одни и те же слова для всех предметов круглой формы, но для предметов продолговатой формы остались другие слова. Только на очень высокой ступени развития пришли к той мысли, что вообще конкретная суть предметов роли не играет и счет можно производить в совершенно абстрактной форме.
Таким образом, моделями здесь были процедуры счета конкретных вещей, причем для каждого конкретного вида предметов использовались свои слова. А потом было замечено, что эти процедуры очень схожи, и было выработано понятие числа, как схемы любого конкретного счета.

Глава 1. Язык науки и язык природы

Что такое время, знают вроде бы все. Но ни один человек не может дать понятию «время» однозначное словесное определение, не прибегая к формулировкам типа «масляное масло». И в этом заключается глубокий научный смысл: согласно известной теореме Геделя о неполноте аксиоматического описания, подобные тавтологические конструкции представляют собой неизбежную особенность любого конечного словаря.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики