ТОП авторов и книг ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ
При отсутствии этих потоков (изоляции системы) в подобных ситуациях развиваются диссипативные разрушения структуры, рассеяния (диссипация) энергии или информации, в результате чего системы деградируют к равновесному состоянию. Взаимодействие со средой создает потенциальные возможности для возникновения неустойчивых состояний и появления вслед за неустойчивостью новой, более упорядоченной структуры.
Возникающая в процессе развития неустойчивость создает возможность скачкообразного перехода системы в новое состояние. Скачок можно рассматривать как реакцию системы на возмущение с целью его компенсации, только система возвращается не в старое состояние, а переходит в новое, т. е. «развитие через неустойчивость» обеспечивает устойчивость на более высоком уровне. При этом сама устойчивость понимается не как устойчивость равновесных структур типа кристаллических образований, а как динамическая устойчивость открытых систем за счет самоорганизации, авторегуляции, осуществляемая для достаточно сложных систем в основном путем информационного обмена (В.Эбелинг).
Спокойный эволюционный этап развития характеризуется наличием соответствующих механизмов, стабилизирующих данное состояние системы и ликвидирующих любое отклонение от него (возвращающих систему к этому состоянию). С течением времени эти механизмы ослабляются из-за количественного роста соответствующих параметров среды или системы, в силу чего они уже не могут осуществлять стабилизацию системы. Наступает кризисное состояние. Новое вступает в противоречие со старым, и, как разрешение этого противоречия, происходит скачкообразный переход системы в новое устойчивое состояние.
Развитие – это прежде всего необратимое изменение. Поэтому слишком устойчивая, т. е. абсолютно устойчивая, система к развитию не способна, ибо она подавляет любые отклонения от своего гиперустойчивого состояния и при любой флуктуации возвращается в свое равновесное состояние. Для перехода в новое состояние система должна стать в какой-то момент неустойчивой. Но перманентная неустойчивость – это другая крайность, которая также вредна для системы, как гиперустойчивость, ибо она исключает «память» системы, адаптивное закрепление полезных для выживания в данной среде характеристик системы.
Таким образом, хотя имеют право на существование только устойчивые системы (неустойчивые сразу элиминируются), но развиваются только те из существующих систем, которые способны (на время) становиться неустойчивыми под влиянием соответствующих факторов. Такой тип поведения характерен для открытых систем, которые могут находиться в стационарных состояниях, далеких от равновесия.
Такое поведение мы наблюдаем у биологических, экологических, экономических, социальных систем. В настоящее время основные положения неравновесной термодинамики о развитии сложных систем стали практически общенаучными.
Опираясь на такое представление о развитии сложных систем, можно выделить два основных параметра, характеризующих процесс развития. Это устойчивость системы и мера ее организованности.
Развитие – это единый целостный процесс, который может рассматриваться только по отношению к системе, так как этот процесс является результатом кооперативного действия элементов системы. Если мы хотим исследовать процесс развития отдельного элемента, то должны представить этот элемент в виде системы, проведя разбиение его на элементы и выделив внешнюю среду. Мерой организованности системы может служить энтропия, понимаемая в широком смысле. Состояние системы определяется распределением ее элементов, обладающих данным признаком, мерой их упорядоченности. Энтропия системы может быть определена для различных уровней агрегирования ее элементов.
Из изложенных выше рассуждений следует, что для определения состояния и тенденций развития системы необходимо знать, в каком состоянии находится система (устойчивом или неустойчивом) и как при этом меняется энтропия системы.
Эволюционный этап развития, характеризуется устойчивостью системы и увеличением энтропии. Рост энтропии может быть вызван не только ростом числа элементов, но и нарушением связей, упорядоченности системы. В этом случае нарушение связей может привести к тому, что система перестанет выполнять возложенные на нее функции, она будет неспособна к этому в силу своей неорганизованности. Следовательно, рост энтропии не всегда свидетельствует о том, что система повышает свой запас устойчивости. Вблизи точки бифуркации случайные флуктуации могут изменить траекторию движения системы. В зависимости от внешних и внутренних условий система либо деградирует, либо переходит на новый качественный уровень развития. Период зарождения и формирования новой системы связан с потерей устойчивости и возникновением диссипативной структуры, которая сохраняется только благодаря обмену энергией, веществом, информацией с внешней средой. Период зарождения новой системы характеризуется увеличением диссипации. При соблюдении определенных условий в системе могут возникнуть процессы упорядочения структуры, в результате чего энтропия будет уменьшаться и система перейдет в новое устойчивое состояние. На этом один цикл развития заканчивается, начинается следующий – эволюция новой системы. Деградация системы рассматривается в двух аспектах.
В первом случае резко возрастает энтропия, система теряет устойчивость, но перехода в новое устойчивое состояние не происходит. В данном случае отсутствуют регулирующие механизмы (внутренние и внешние), возникает лавинообразный рост энтропии вследствие роста числа новых элементов-признаков и отсутствия когерентного их поведения.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
Возникающая в процессе развития неустойчивость создает возможность скачкообразного перехода системы в новое состояние. Скачок можно рассматривать как реакцию системы на возмущение с целью его компенсации, только система возвращается не в старое состояние, а переходит в новое, т. е. «развитие через неустойчивость» обеспечивает устойчивость на более высоком уровне. При этом сама устойчивость понимается не как устойчивость равновесных структур типа кристаллических образований, а как динамическая устойчивость открытых систем за счет самоорганизации, авторегуляции, осуществляемая для достаточно сложных систем в основном путем информационного обмена (В.Эбелинг).
Спокойный эволюционный этап развития характеризуется наличием соответствующих механизмов, стабилизирующих данное состояние системы и ликвидирующих любое отклонение от него (возвращающих систему к этому состоянию). С течением времени эти механизмы ослабляются из-за количественного роста соответствующих параметров среды или системы, в силу чего они уже не могут осуществлять стабилизацию системы. Наступает кризисное состояние. Новое вступает в противоречие со старым, и, как разрешение этого противоречия, происходит скачкообразный переход системы в новое устойчивое состояние.
Развитие – это прежде всего необратимое изменение. Поэтому слишком устойчивая, т. е. абсолютно устойчивая, система к развитию не способна, ибо она подавляет любые отклонения от своего гиперустойчивого состояния и при любой флуктуации возвращается в свое равновесное состояние. Для перехода в новое состояние система должна стать в какой-то момент неустойчивой. Но перманентная неустойчивость – это другая крайность, которая также вредна для системы, как гиперустойчивость, ибо она исключает «память» системы, адаптивное закрепление полезных для выживания в данной среде характеристик системы.
Таким образом, хотя имеют право на существование только устойчивые системы (неустойчивые сразу элиминируются), но развиваются только те из существующих систем, которые способны (на время) становиться неустойчивыми под влиянием соответствующих факторов. Такой тип поведения характерен для открытых систем, которые могут находиться в стационарных состояниях, далеких от равновесия.
Такое поведение мы наблюдаем у биологических, экологических, экономических, социальных систем. В настоящее время основные положения неравновесной термодинамики о развитии сложных систем стали практически общенаучными.
Опираясь на такое представление о развитии сложных систем, можно выделить два основных параметра, характеризующих процесс развития. Это устойчивость системы и мера ее организованности.
Развитие – это единый целостный процесс, который может рассматриваться только по отношению к системе, так как этот процесс является результатом кооперативного действия элементов системы. Если мы хотим исследовать процесс развития отдельного элемента, то должны представить этот элемент в виде системы, проведя разбиение его на элементы и выделив внешнюю среду. Мерой организованности системы может служить энтропия, понимаемая в широком смысле. Состояние системы определяется распределением ее элементов, обладающих данным признаком, мерой их упорядоченности. Энтропия системы может быть определена для различных уровней агрегирования ее элементов.
Из изложенных выше рассуждений следует, что для определения состояния и тенденций развития системы необходимо знать, в каком состоянии находится система (устойчивом или неустойчивом) и как при этом меняется энтропия системы.
Эволюционный этап развития, характеризуется устойчивостью системы и увеличением энтропии. Рост энтропии может быть вызван не только ростом числа элементов, но и нарушением связей, упорядоченности системы. В этом случае нарушение связей может привести к тому, что система перестанет выполнять возложенные на нее функции, она будет неспособна к этому в силу своей неорганизованности. Следовательно, рост энтропии не всегда свидетельствует о том, что система повышает свой запас устойчивости. Вблизи точки бифуркации случайные флуктуации могут изменить траекторию движения системы. В зависимости от внешних и внутренних условий система либо деградирует, либо переходит на новый качественный уровень развития. Период зарождения и формирования новой системы связан с потерей устойчивости и возникновением диссипативной структуры, которая сохраняется только благодаря обмену энергией, веществом, информацией с внешней средой. Период зарождения новой системы характеризуется увеличением диссипации. При соблюдении определенных условий в системе могут возникнуть процессы упорядочения структуры, в результате чего энтропия будет уменьшаться и система перейдет в новое устойчивое состояние. На этом один цикл развития заканчивается, начинается следующий – эволюция новой системы. Деградация системы рассматривается в двух аспектах.
В первом случае резко возрастает энтропия, система теряет устойчивость, но перехода в новое устойчивое состояние не происходит. В данном случае отсутствуют регулирующие механизмы (внутренние и внешние), возникает лавинообразный рост энтропии вследствие роста числа новых элементов-признаков и отсутствия когерентного их поведения.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103