ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Но утверждать, что это точно так, мы не можем, тайну эту могут раскрыть только сами ученые –специалисты.
А о возможной подмене алгоритма заметим следующее. Если авторы все-таки подменили алгоритм декодирования, описанный в ГОСТе, другим алгоритмом, который, говоря их же словами, есть уже не закон, а частное мнение какой-то группы лиц, то они нарушили не только букву закона, но и его дух. Дело в том, что алгоритм ГОСТа имеет особое назначение: он рекомендуется для декодирования знаков символа с целью определения допусков на размеры знаков, параметры которых отличны от номинальных, в том числе и для определения допуска на ширину знака (см. п.4.6 ГОСТа).
Ширина одного и того же знака может изменяться, например, из-за типографского дефекта: поле пробелов справа или слева от трехэлементного знака может быть увеличено или сокращено. Для знака шестерки предельное сокращение поля пробелов составляет четыре модуля, и типовой знак-ограничитель с точки зрения алгоритма ГОСТа, если уж его применять для «декодирования» вспомогательных знаков, должен рассматриваться именно как такой дефектный знак шестерки. Вопрос в том, как будет декодирован этот знак в соответствии с алгоритмом ГОСТа: как шестерка или как какая-то другая цифра? Но сам алгоритм изменять нельзя: измеренную ширину знака недопустимо делить на 3 или на 5 не только потому, что это формально не предусмотрено ГОСТом, но и потому, что это не соответствует сути дела: по смыслу алгоритма ширину знака всегда нужно делить на 7.
Если бы авторы обратили внимание на назначение алгоритма ГОСТа, они бы, несомненно, насторожились: неужели возможно такое, что алгоритм, предназначенный для определения допусков на ширину знака символа, настолько нечувствителен к ее изменению, что «не заметит» ее уменьшения более чем в два раза при «потере» четырех модулей из семи? Желающие могут решить простую задачу: найти максимальное значение величины сокращения поля пробелов (выраженное в единицах ширины модуля знака), при котором знак шестерки еще будет распознаваться алгоритмом декодирования ГОСТа как шестерка.
Декодирование вспомогательных знаков по ГОСТу
Таким образом, авторы либо применили один и тот же алгоритм (алгоритм ГОСТа) для декодирования тождественных знаков (знаков шестерки), либо применили два разных алгоритма (один из которых не соответствует алгоритму ГОСТа) для декодирования разных знаков. В обоих случаях получились очевидные результаты.
Чтобы получить результат содержательный, необходимо к разным знакам – к знакам вспомогательным и к знаку цифры 6 – применить один и тот же алгоритм декодирования, именно – алгоритм, описанный в ГОСТе. Авторы декларировали это намерение, но не осуществили его, в ходе своих ошибочных рассуждений подменив либо декодируемый знак, либо алгоритм декодирования.
Применим алгоритм ГОСТа для декодирования вспомогательных знаков.1. Для типового знака-ограничителя:
E1 =2; е2=2;
S=3; m=3/7;
e1/m=e2/m=2*7/3=4, 67. Так как это значение попадает в интервал от 4, 5 до 5, 5, то Е1=Е2=5. По таблице 4.10 ГОСТа определяем соответствующую цифру. Это – "3".
2. Для центрального знака-ограничителя:
е1=2;е2=2;в1=в2=1;
S=5; m=5/7;
e1/m=e2/m=2*7/5=2, 6;
Так как значения величин e1/m и е2/m попадают в интервал от 2, 5 до 3, 5, то Е1=Е2=3. По таблице 4.10 ГОСТа, с учетом того, что суммарная нормированная ширина штрихов (в1+в2)/m=2*7/5=2, 6<3, определяем соответствующую цифру. Это – "8".
Таким образом, штрих-коды типа ЕАН/ЮПиСи содержат число 383[955].
Интересно, что авторы, утверждая, что все алгоритмы распознают вспомогательные знаки как шестерки, и восклицая: «И ничего с этим не поделаешь!», имели перед собой как раз такой алгоритм, который, будучи использован для декодирования вспомогательных знаков, сопоставляет им некоторые цифры, и эти цифры – не шестерки.
Выводы
Какие же можно сделать выводы из изложенного выше? Поскольку мы ничего не меняли собственно в методе доказательства В. Ахрамеева и И. Башкирова и только исправили допущенную ими ошибку, точно применив алгоритм ГОСТа для декодирования вспомогательных знаков, можно просто воспользоваться основными выводами ученых-специалистов, дословно их переписав и лишь уточнив численные значения. С этими уточненными выводами с необходимостью должны согласиться и сами ученые – специалисты, и эксперты, давшие положительные отзывы на их работу, и вообще все, у кого она не вызвала возражений:
"Теперь мы ясно видим, что цифра "6" в штрих – коде используется только в качестве собственно знака "6" и не используется в качестве специального символа. Но эти два знака сознательно смешивают; и на этом происходит подмена, в результате которой некомпетентные или недобросовестные люди запутывают недостаточно осведомленных. А обнаруживается данный факт только описанным в ГОСТе алгоритмом декодирования, который, как мы видели выше, доказывает тождественность предлагаемых ГОСТом типовых знаков-ограничителей цифре "3", а центрального знака-ограничителя –цифре "8".
Вот откуда берутся две тройки и одна восьмерка в штрих-кодах EAN-13/UPC!
Итак, констатируем, что алгоритм декодирования ГОСТа (который есть закон, а не частное мнение какого-то лица или группы лиц) единственным образом распознает типовые знаки-ограничители как цифру "3", а центральный знак-ограничитель – как цифру "8", отличая их от шестерки. Все, точка. "
священник Александр Дубинин, кандидат технических наук.
Примечания

[1]
Неклесса А. Конец эпохи Большого Модерна // Знамя.2000, № 1, С.187.

[2]
Нет, нет, сказка дивная, и Чебурашка очень симпатичен. Но вот песенка из мультфильма уж больно непорядочная…

[3]
См.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики