ТОП авторов и книг ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ
при этом e1/m=e2/m=2, и знак будет декодирован как "6". Если же рядом будет пробел шириной в половину ширины элемента, то модуль будет вдвое уже каждого элемента; при этом e1/m=e2/m=4, и знак будет декодирован как "1".
Итак, утверждение авторов, что пробелы, окружающие трехэлементный знак, игнорируются алгоритмом декодирования, ошибочно – от ширины этих пробелов существенно зависит результат декодирования.
Что же привело авторов исследования к ошибке? Об этом можно лишь догадываться. Может быть, некорректная запись: е1=Е1 и е2=Е2 (нельзя ставить знак равенства между размерной и безразмерной величинами даже если они численно равны). Может быть, то, что авторы свои рассуждения начали с п. З Алгоритма, не показав, как же все-таки они получили значение m=1. Может быть, то, что они отбросили часть процедуры декодирования, связанную с определением «базовых значений RT», не заметив, что она важна не только как задающая некоторые интервалы при наличии всевозможных неточностей, но и как устанавливающая (и это очень важно) масштаб, задающая единицу длины S/7, в которой и выражаются расстояния e1 и е2. Так или иначе, ученые специалисты забыли о величине m и о том, что ее необходимо измерять.
Тем не менее, они получили определенный результат, как будто действительно игнорируя пробелы: «все вспомогательные знаки алгоритмом ГОСТа декодируются как шестерки». Как это могло быть? Теперь-то мы, наконец, приступаем к главной «тайне» исследования, скрываемой его авторами: какие же все-таки знаки они сначала начертали в тетрадке для арифметики, а потом декодировали? Попробуем восстановить пропущенное авторами: п.1 и п.2 Алгоритма.
Тайна исследования ученых – специалистов
Известно следующее:
1. В знаке содержится последовательность элементов равной ширины: «штрих-пробел-штрих» («трехэлементный знак»).
2. Ширина каждого элемента равна одному модулю знака.
3. Ширина модуля знака m=1.
4. Авторы декодировали знак в соответствии с п.4.6 ГОСТа.
Поскольку авторы действовали по ГОСТу, они должны были измерить ширину знака S и поделить ее на 7, определив ширину модуля знака m. Результат деления они сообщили: m=1. Какова же была ширина знака S? Так как m=S/7, то S=m*7. При m=1 S=7! Это означает, что знак, который декодировали ученые – специалисты, состоял из следующей последовательности штрихов и пробелов (все – шириной в один модуль): «Ш П Ш П П П П». А это, в соответствии с табл.4.1 ГОСТа, – знак цифры "6". Таким образом, авторы, пририсовав «по вкусу» к типовому знаку-ограничителю четыре пробела, подменили его знаком шестерки. В результате декодирования знака шестерки получилась, конечно, шестерка.
Подобным же образом они, по-видимому, подменили и центральный знак-ограничитель: с одной стороны знака отбросили один пробел, с другой стороны пририсовали к знаку по вкусу три дополнительных пробела («они все равно не участвуют в декодировании»), получили знак шестерки, декодировали его и опять получили шестерку.
Нам могут возразить: «Для вспомогательного знака шириной S=3, нужно S делить не на 7, а на 3. Тогда и при S=3 получается правильное значение ширины модуля m=1. Так, наверное, и делали ученые – специалисты».
На это ответим следующее: "Чтобы ширину знака S делить не на 7, а на 3, необходимо заранее, еще до выполнения действия деления, распознать декодируемый знак как знак вспомогательный, иначе деление на 3 необъяснимо. После такого распознавания (идентификации) все действия со знаком (измерение каких-то параметров, преобразование) уже не имеют характера декодирования[954]. Декодировать, собственно, уже нечего, «устройство» знака, в общем, уже известно, можно только что-то уточнять, проверять, сравнивать, использовать результаты измерений для экстраполяции. В этом заключается существенное отличие знаков вспомогательных от информационных: после идентификации знака как знака информационного его необходимо именно декодировать – определить, какую цифру (от 0 до 9) он кодирует. Алгоритм ГОСТа все предлагаемые ему знаки рассматривает как информационные и декодирует их. И всегда S делит на 7. Если ученые специалисты делили на 3 и на 5, они просто подменили алгоритм ГОСТа другим алгоритмом, который каким-то образом распознает знак как вспомогательный (еще до п.2 Алгоритма), а после распознавания сравнивает его по табл.4.10 с информационными знаками по некоторым параметрам.
Таким образом, если авторы подменили алгоритм, то для вспомогательных знаков, не тождественных ни с одним из информационных знаков (повторяем: еще до применения процедуры декодирования знак рассматривался состоящим из трех модулей, в отличие от информационных знаков, всегда состоящих из семи модулей), было установлено сходство (по параметрам e1/m и е2/m) со знаком цифры "6". Полученный результат в этом случае полностью эквивалентен простому сопоставлению таблиц кодирования 4.1 и 4.2. Ничего нового такое «декодирование» с использованием таблицы 4.10 здесь не дает. Знаки похожи, но не тождественны (все – в полном соответствии с табл.4.1 и 4.2) – как и писали критикуемые учеными-специалистами авторы.
Итак, ученые-специалисты в своих рассуждениях либо подменили вспомогательные знаки знаком цифры "6" и «доказали» их тождество знаку цифры "6", либо подменили алгоритм, и установили сходство вспомогательных знаков со знаком цифры "6".
Какой из этих двух вариантов имел место в действительности? Поскольку авторы настаивают на тождестве знаков, утверждают, что можно пририсовывать произвольное число пробелов к трехэлементному знаку и выносят суждение об алгоритме ГОСТа, то, как нам кажется, они скорее всего подменили знаки.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
Итак, утверждение авторов, что пробелы, окружающие трехэлементный знак, игнорируются алгоритмом декодирования, ошибочно – от ширины этих пробелов существенно зависит результат декодирования.
Что же привело авторов исследования к ошибке? Об этом можно лишь догадываться. Может быть, некорректная запись: е1=Е1 и е2=Е2 (нельзя ставить знак равенства между размерной и безразмерной величинами даже если они численно равны). Может быть, то, что авторы свои рассуждения начали с п. З Алгоритма, не показав, как же все-таки они получили значение m=1. Может быть, то, что они отбросили часть процедуры декодирования, связанную с определением «базовых значений RT», не заметив, что она важна не только как задающая некоторые интервалы при наличии всевозможных неточностей, но и как устанавливающая (и это очень важно) масштаб, задающая единицу длины S/7, в которой и выражаются расстояния e1 и е2. Так или иначе, ученые специалисты забыли о величине m и о том, что ее необходимо измерять.
Тем не менее, они получили определенный результат, как будто действительно игнорируя пробелы: «все вспомогательные знаки алгоритмом ГОСТа декодируются как шестерки». Как это могло быть? Теперь-то мы, наконец, приступаем к главной «тайне» исследования, скрываемой его авторами: какие же все-таки знаки они сначала начертали в тетрадке для арифметики, а потом декодировали? Попробуем восстановить пропущенное авторами: п.1 и п.2 Алгоритма.
Тайна исследования ученых – специалистов
Известно следующее:
1. В знаке содержится последовательность элементов равной ширины: «штрих-пробел-штрих» («трехэлементный знак»).
2. Ширина каждого элемента равна одному модулю знака.
3. Ширина модуля знака m=1.
4. Авторы декодировали знак в соответствии с п.4.6 ГОСТа.
Поскольку авторы действовали по ГОСТу, они должны были измерить ширину знака S и поделить ее на 7, определив ширину модуля знака m. Результат деления они сообщили: m=1. Какова же была ширина знака S? Так как m=S/7, то S=m*7. При m=1 S=7! Это означает, что знак, который декодировали ученые – специалисты, состоял из следующей последовательности штрихов и пробелов (все – шириной в один модуль): «Ш П Ш П П П П». А это, в соответствии с табл.4.1 ГОСТа, – знак цифры "6". Таким образом, авторы, пририсовав «по вкусу» к типовому знаку-ограничителю четыре пробела, подменили его знаком шестерки. В результате декодирования знака шестерки получилась, конечно, шестерка.
Подобным же образом они, по-видимому, подменили и центральный знак-ограничитель: с одной стороны знака отбросили один пробел, с другой стороны пририсовали к знаку по вкусу три дополнительных пробела («они все равно не участвуют в декодировании»), получили знак шестерки, декодировали его и опять получили шестерку.
Нам могут возразить: «Для вспомогательного знака шириной S=3, нужно S делить не на 7, а на 3. Тогда и при S=3 получается правильное значение ширины модуля m=1. Так, наверное, и делали ученые – специалисты».
На это ответим следующее: "Чтобы ширину знака S делить не на 7, а на 3, необходимо заранее, еще до выполнения действия деления, распознать декодируемый знак как знак вспомогательный, иначе деление на 3 необъяснимо. После такого распознавания (идентификации) все действия со знаком (измерение каких-то параметров, преобразование) уже не имеют характера декодирования[954]. Декодировать, собственно, уже нечего, «устройство» знака, в общем, уже известно, можно только что-то уточнять, проверять, сравнивать, использовать результаты измерений для экстраполяции. В этом заключается существенное отличие знаков вспомогательных от информационных: после идентификации знака как знака информационного его необходимо именно декодировать – определить, какую цифру (от 0 до 9) он кодирует. Алгоритм ГОСТа все предлагаемые ему знаки рассматривает как информационные и декодирует их. И всегда S делит на 7. Если ученые специалисты делили на 3 и на 5, они просто подменили алгоритм ГОСТа другим алгоритмом, который каким-то образом распознает знак как вспомогательный (еще до п.2 Алгоритма), а после распознавания сравнивает его по табл.4.10 с информационными знаками по некоторым параметрам.
Таким образом, если авторы подменили алгоритм, то для вспомогательных знаков, не тождественных ни с одним из информационных знаков (повторяем: еще до применения процедуры декодирования знак рассматривался состоящим из трех модулей, в отличие от информационных знаков, всегда состоящих из семи модулей), было установлено сходство (по параметрам e1/m и е2/m) со знаком цифры "6". Полученный результат в этом случае полностью эквивалентен простому сопоставлению таблиц кодирования 4.1 и 4.2. Ничего нового такое «декодирование» с использованием таблицы 4.10 здесь не дает. Знаки похожи, но не тождественны (все – в полном соответствии с табл.4.1 и 4.2) – как и писали критикуемые учеными-специалистами авторы.
Итак, ученые-специалисты в своих рассуждениях либо подменили вспомогательные знаки знаком цифры "6" и «доказали» их тождество знаку цифры "6", либо подменили алгоритм, и установили сходство вспомогательных знаков со знаком цифры "6".
Какой из этих двух вариантов имел место в действительности? Поскольку авторы настаивают на тождестве знаков, утверждают, что можно пририсовывать произвольное число пробелов к трехэлементному знаку и выносят суждение об алгоритме ГОСТа, то, как нам кажется, они скорее всего подменили знаки.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249