ТОП авторов и книг ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ
Для оценки величины разностного порога используют среднеквадратичное отклонение полученного распределения или иногда просто разность между 75 %-ным и 50 %-ным порогами.
Психофизика как наука получила свое начало с определения понятия и оценки величин сенсорных порогов. Сегодня та часть психофизики, которая занимается исследованиями в этой области, называется психофизика-1 или пороговая психофизика.
§ 5.3. ПСИХОЛОГИЧЕСКИЙ СМЫСЛ ПСИХОФИЗИЧЕСКИХ ЗАКОНОВ
Порогу чувствительности соответствует точка в сенсорном пространстве. В этой точке отражается значение стимула, при котором сенсорная система переходит из одного состояния в другое. В случае абсолютного порога она переходит от отсутствия ощущения к появлению едва заметного ощущения. В случае разностного порога – от отсутствия ощущения разницы к появлению ощущения различия. Таким образом, пороговые измерения – измерения точечные. Их результаты могут очертить границы (диапазон изменений величины стимулов), в которых действует сенсорная система, но они ничего не говорят о ее структуре. Следующим шагом в решении психофизической проблемы было построение функциональных зависимостей между психофизическими коррелятами, другими словами, построение психофизических шкал. Раздел психофизики, который занимается задачами построения психофизических шкал (психофизическим шкалированием), получил название психофизика-2. Решение этих задач нашло отражение в формулировке психофизических законов.
Три самых известных психофизических закона представляют собой теоретические модели структуры сенсорного пространства. В основе этих моделей лежит эмпирический закон Бугера – Вебера. На границе XVIII–XIX вв. французский физик Бугер открыл некий эффект для зрительной модальности, а немецкий физиолог Вебер проверил его действие для других модальностей. Этот эффект заключается в том, что отношение величины едва заметного увеличения стимула к исходному его значению остается постоянным в весьма широком диапазоне значений величины стимула, т. е. ΔR / R = k .
Это соотношение получило название закона Бугера – Вебера.
Закон Фехнера. Решая свою задачу о взаимоотношении субъективного и объективного, Фехнер рассуждал примерно следующим образом. Предположим, что наше сенсорное пространство состоит из очень маленьких дискретных элементов е – едва заметных различений. Эти элементы равны между собой, т. е. постоянны: e = k , где k – константа.
С учетом коэффициента пропорциональности две константы можно приравнять друг к другу. Таким образом, постоянное отношение закона Бугера – Вебера можно приравнять к константе, связанной с едва заметным различением: ΔR / R = Ke, где K – коэффициент пропорциональности.
Далее Фехнер сделал шаг, за который его до сих пор ругают математики (Фехнер сам был прекрасным математиком, следовательно, сознательно пошел на это «преступление»). От этого уравнения, связывающего малые величины е и R , он перешел к дифференциальному уравнению: dR / R = KxdE , где dE – дифференциал, соответствующий очень маленькой величине е .
Решением этого уравнения будет соотношение: E = C 1 x InR + C 2 , где C 1 и С 2 – константы интегрирования.
Определим С 2 . Ощущение начинается с какого-то значения стимула, соответствующего пороговому ( R 1 ). При R = R 1 ощущение отсутствует и появляется только при малейшем превышении R над R 1 , т. е. в этом случае Е = 0 . Подставим в полученное решение: 0 = C 1 x InR + C 2 . Отсюда С 2 = – C 1 х InR 1 , следо вательно: E = C 1 x InR 1 = C 1 x In(R / R 1 ).
Соотношение: E = C 1 x In(R / R 1 ) – называется законом Фехнера или иногда законом Вебера – Фехнера.
Отметим, что закон Фехнера активно использует понятие порога. R 1 – это, очевидно, абсолютный порог; е – элементарные ощущения, аналог порога различения.
Закон Стивенса. Американский психофизик Стивенс предложил свое решение задачи. Исходным пунктом для него был также закон Бугера – Вебера. Но модель сенсорного пространства он представлял себе иначе. Стивене предположил, что в сенсорном пространстве действует отношение, аналогичное закону Бугера – Вебера в пространстве стимулов: ΔE / E = k, т. е. отношение едва заметного приращения ощущения к его исходной величине является постоянной величиной. Опять же с точностью до коэффициента пропорциональности мы можем приравнять две постоянные величины: ( ΔE / E) = K(ΔR / R).
Так как Стивене не постулировал дискретность сенсорного пространства, он вполне корректно мог перейти к дифференциальному уравнению: dE / E = dR / R, решение этого уравнения Е = k х R n получило название закона Стивенса. Показатель степени n для каждой модальности имеет свое значение, но, как правило, меньше единицы.
Американские ученые Р. и Б. Тетсунян предложили объяснение смысла показателя степени п. Составим систему уравнений для двух крайних случаев – минимального и максимального ощущения: E min = k x R n min x E max = K x R n max .
Прологарифмируем обе части уравнения и получим: InE min = n x InR min + Ink, InE max = n x InR max + Ink .
Решив систему уравнений относительно n , получаем: n = (InE max – InE min ) / (InR max – InR min ) или n = In(E max – E min ) / In(R max – R min )
Таким образом, по мнению Тетсунян, значение n для каждой модальности определяет соотношение между диапазоном ощущений и диапазоном воспринимаемых стимулов.
Сто с лишним лет не прекращаются споры между сторонниками логарифмической зависимости силы ощущения от величины стимула (закон Фехнера) и степенной (закон Стивенса). Результаты экспериментов с одними модальностями лучше аппроксимируются логарифмом, с другими – степенной функцией.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
Психофизика как наука получила свое начало с определения понятия и оценки величин сенсорных порогов. Сегодня та часть психофизики, которая занимается исследованиями в этой области, называется психофизика-1 или пороговая психофизика.
§ 5.3. ПСИХОЛОГИЧЕСКИЙ СМЫСЛ ПСИХОФИЗИЧЕСКИХ ЗАКОНОВ
Порогу чувствительности соответствует точка в сенсорном пространстве. В этой точке отражается значение стимула, при котором сенсорная система переходит из одного состояния в другое. В случае абсолютного порога она переходит от отсутствия ощущения к появлению едва заметного ощущения. В случае разностного порога – от отсутствия ощущения разницы к появлению ощущения различия. Таким образом, пороговые измерения – измерения точечные. Их результаты могут очертить границы (диапазон изменений величины стимулов), в которых действует сенсорная система, но они ничего не говорят о ее структуре. Следующим шагом в решении психофизической проблемы было построение функциональных зависимостей между психофизическими коррелятами, другими словами, построение психофизических шкал. Раздел психофизики, который занимается задачами построения психофизических шкал (психофизическим шкалированием), получил название психофизика-2. Решение этих задач нашло отражение в формулировке психофизических законов.
Три самых известных психофизических закона представляют собой теоретические модели структуры сенсорного пространства. В основе этих моделей лежит эмпирический закон Бугера – Вебера. На границе XVIII–XIX вв. французский физик Бугер открыл некий эффект для зрительной модальности, а немецкий физиолог Вебер проверил его действие для других модальностей. Этот эффект заключается в том, что отношение величины едва заметного увеличения стимула к исходному его значению остается постоянным в весьма широком диапазоне значений величины стимула, т. е. ΔR / R = k .
Это соотношение получило название закона Бугера – Вебера.
Закон Фехнера. Решая свою задачу о взаимоотношении субъективного и объективного, Фехнер рассуждал примерно следующим образом. Предположим, что наше сенсорное пространство состоит из очень маленьких дискретных элементов е – едва заметных различений. Эти элементы равны между собой, т. е. постоянны: e = k , где k – константа.
С учетом коэффициента пропорциональности две константы можно приравнять друг к другу. Таким образом, постоянное отношение закона Бугера – Вебера можно приравнять к константе, связанной с едва заметным различением: ΔR / R = Ke, где K – коэффициент пропорциональности.
Далее Фехнер сделал шаг, за который его до сих пор ругают математики (Фехнер сам был прекрасным математиком, следовательно, сознательно пошел на это «преступление»). От этого уравнения, связывающего малые величины е и R , он перешел к дифференциальному уравнению: dR / R = KxdE , где dE – дифференциал, соответствующий очень маленькой величине е .
Решением этого уравнения будет соотношение: E = C 1 x InR + C 2 , где C 1 и С 2 – константы интегрирования.
Определим С 2 . Ощущение начинается с какого-то значения стимула, соответствующего пороговому ( R 1 ). При R = R 1 ощущение отсутствует и появляется только при малейшем превышении R над R 1 , т. е. в этом случае Е = 0 . Подставим в полученное решение: 0 = C 1 x InR + C 2 . Отсюда С 2 = – C 1 х InR 1 , следо вательно: E = C 1 x InR 1 = C 1 x In(R / R 1 ).
Соотношение: E = C 1 x In(R / R 1 ) – называется законом Фехнера или иногда законом Вебера – Фехнера.
Отметим, что закон Фехнера активно использует понятие порога. R 1 – это, очевидно, абсолютный порог; е – элементарные ощущения, аналог порога различения.
Закон Стивенса. Американский психофизик Стивенс предложил свое решение задачи. Исходным пунктом для него был также закон Бугера – Вебера. Но модель сенсорного пространства он представлял себе иначе. Стивене предположил, что в сенсорном пространстве действует отношение, аналогичное закону Бугера – Вебера в пространстве стимулов: ΔE / E = k, т. е. отношение едва заметного приращения ощущения к его исходной величине является постоянной величиной. Опять же с точностью до коэффициента пропорциональности мы можем приравнять две постоянные величины: ( ΔE / E) = K(ΔR / R).
Так как Стивене не постулировал дискретность сенсорного пространства, он вполне корректно мог перейти к дифференциальному уравнению: dE / E = dR / R, решение этого уравнения Е = k х R n получило название закона Стивенса. Показатель степени n для каждой модальности имеет свое значение, но, как правило, меньше единицы.
Американские ученые Р. и Б. Тетсунян предложили объяснение смысла показателя степени п. Составим систему уравнений для двух крайних случаев – минимального и максимального ощущения: E min = k x R n min x E max = K x R n max .
Прологарифмируем обе части уравнения и получим: InE min = n x InR min + Ink, InE max = n x InR max + Ink .
Решив систему уравнений относительно n , получаем: n = (InE max – InE min ) / (InR max – InR min ) или n = In(E max – E min ) / In(R max – R min )
Таким образом, по мнению Тетсунян, значение n для каждой модальности определяет соотношение между диапазоном ощущений и диапазоном воспринимаемых стимулов.
Сто с лишним лет не прекращаются споры между сторонниками логарифмической зависимости силы ощущения от величины стимула (закон Фехнера) и степенной (закон Стивенса). Результаты экспериментов с одними модальностями лучше аппроксимируются логарифмом, с другими – степенной функцией.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355