ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

В конце концов Лиувилль отредактировал мемуары Галуа и опубликовал в своем престижном журнале «Journal de Math?matiques pures et appliqu?es». Многие математики живо откликнулись на эту публикацию, потому что Галуа продемонстрировал полное понимание того, как следует действовать, чтобы найти решения уравнений пятой степени. Сначала Галуа разделил все уравнения пятой степени на два типа: уравнения разрешимые и неразрешимые, а затем для разрешимых уравнений предложил рецепт, как найти решения таких уравнений. Кроме того, Галуа рассмотрел уравнения более высокого порядка, содержащие x 6, x 7 и т. д., и смог указать, какие из них разрешимы. Его труд стал одним из шедевров математики XIX века.
В предисловии к работам Галуа Лиувилль пустился в рассуждения о том, почему этот молодой математик был отвергнут старшими коллегами и как его, Лиувилля, собственными усилиями Галуа был возрожден: «Гипертрофированное стремление к точности было причиной того дефекта, которого всеми силами следует избегать при изучении абстрактных и загадочных проблем Алгебры. Ясность тем более необходима, чем дальше автор пытается увести читателя от проторенного пути вглубь неизвестной территории. Как говорил Декарт, "при рассмотрении трансцендентальных вопросов нужно быть трансцендентально ясным".
Галуа слишком часто пренебрегал этим предписанием, и мы можем понять, как знаменитые математики своими суровыми мудрыми советами пытались наставить на истинный путь новичка, гениально одаренного, но неопытного. Автор, которого они осудили, был перед ними, преисполненный рвения, деятельный; он мог бы извлечь пользу из данного ему совета.
Но теперь все изменилось. Галуа больше нет с нами! Не будем вдаваться в бесполезную критику; оставим же его недостатки и обратимся к достоинствам…
Мое усердие было вознаграждено, и я испытал необычайное удовлетворение в тот момент, когда, восполнив мелкие пробелы, убедился в правильности метода, с помощью которого Галуа доказал эту прекрасную теорему».
Вычисления Галуа концентрировались вокруг так называемой теории групп — идеи, которую Галуа превратил в мощное оружие, способное решать проблемы, ранее казавшиеся неразрешимыми. С точки зрения математики, группа представляет собой множество элементов, над которыми можно производить некоторую операцию (обычно ее называют сложением или умножением), удовлетворяющую определенным условиям. Важным свойством группы является ее замкнутость относительно этой операции: комбинируя любые два элемента группы с помощью операции, мы получаем другой элемент, также принадлежащий группе.
Например, целые числа образуют группу относительно операции сложения. Комбинируя с помощью операции сложения одно целое число с другим, мы получаем третье целое число, например,
4 + 12 = 16 .
Все возможные результаты сложения целых чисел всегда являются целыми числами, и математики, констатируя это обстоятельство, говорят, что «целые числа замкнуты относительно сложения», или «целые числа образуют группу по сложению». Однако, целые числа не образуют группу относительно операции деления, поскольку при делении одного целого числа на другое результат не обязательно будет целым числом, например, 4:12=1/3.
Дробь 1/3 — не целое число, оно выходит за пределы исходного множества целых чисел. Но если рассматривать более широкое множество так называемых рациональных чисел, то замкнутость относительно операции деления восстанавливается: рациональные числа замкнуты относительно деления. Даже после того, как эти слова произнесены, необходимо соблюдать осторожность, так как деление на нуль (элемент множества рациональных чисел) приводит к различным математическим кошмарам. Поэтому точнее было бы утверждение: рациональные числа без нуля замкнуты относительно деления. Во многих отношениях замкнутость аналогична понятию полноты, описанному в предыдущих главах.
Целые числа и рациональные числа, или дроби, содержат бесконечное число элементов, и можно было бы предположить, что чем больше группа, тем больший интерес она вызывает к себе в математике. Но Галуа придерживался философии «чем меньше, тем лучше» и показал, что небольшие тщательно построенные группы могут обладать весьма богатым набором свойств. Вместо того, чтобы воспользоваться бесконечными группами, Галуа начал с конкретного уравнения и построил свою группу из нескольких решений этого уравнения. Именно группы, образованные из решений уравнений пятой степени, позволили Галуа получить результаты об этих уравнениях. Через полтора столетия Уайлс воспользовался теорией Галуа как одной из основ для своего доказательства гипотезы Таниямы-Шимуры.
* * *
Чтобы доказать гипотезу Таниямы-Шимуры, математикам было необходимо показать, что каждое из бесконечного множества эллиптических уравнений может быть поставлено в соответствие с какой-то модулярной формой. Первоначально математики пытались показать, что целая молекула ДНК одного эллиптического уравнения (E -ряд) может быть поставлена в соответствие целой молекуле ДНК (M -ряд) одной модулярной формы. Хотя такой подход вполне разумен, никому не удалось повторить процесс установления такого соответствия для бесконечно многих эллиптических уравнений и модулярных форм.
Уайлс избрал совершенно другой подход к этой проблеме. Вместо того, чтобы пытаться установить соответствие между всеми элементами E -ряда и всеми элементами M -ряда, а затем переходить к следующим рядам, он попытался установить соответствие между одним членом E -ряда и одним членом M -ряда, а затем переходить к следующей паре элементов.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики