ТОП авторов и книг ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ
Город стоит на берегах реки Прегили и состоит из четырех частей, соединенных между собой семью мостами. План города схематически изображен на рис. 7. Некоторые из любопытных жителей Кенигсберга заинтересовались, можно ли обойти все семь мостов, не переходя ни по одному из них дважды. Кое-кто из обитателей Кенигсберга попытался проложить различные маршруты, но ничего хорошего из этого не вышло. Эйлеру также не удалось обойти все семь кёнигсбергских мостов, побывав на каждом только один раз, но зато он сумел объяснить, почему сделать это невозможно.
Рис. 7. Река Прегиль делит Кёнигсберг на четыре несвязанные части A, B, C и D. Различные части города соединены между собой семью мостами. Можно ли обойти все семь мостов побывав на каждом один и только один раз?
Рис. 8. Упрощенная схема семи кёнигсбергских мостов
Эйлер взял план города и заменил его упрощенной схемой, на которой части города изображены точками (узлами), а мосты — линиями (ребрами), как на рис. 8. Затем Эйлер стал рассуждать так. Чтобы существовал маршрут, позволяющий обойти ровно по одному разу все мосты, каждая точка на схеме должна принадлежать четному числу линий. Это связано с тем, что в середине обхода путешественник, проходя какую-то из частей города, должен войти в нее по одному мосту, а выйти — по другому. Из этого правила существуют лишь два исключения: когда путешественник начинает или завершает обход. В самом начале обхода путешественник покидает некую часть города, и для выхода из нее необходим только один-единственный мост. Если обход начинается и заканчивается в различных частях города, то число мостов, ведущих к каждой из них нечетно. Но если обход начинается и заканчивается в одной и той же части города, то соответствующая ей точка на схеме, как и все другие точки, должна принадлежать четному числу линий (т. е. эта часть города должна быть соединена с другими частями четным числом мостов).
Таким образом, заключил Эйлер, какой бы ни была сеть мостов, обойти все мосты, побывав на каждом по одному и только одному разу, можно только в том случае, если все части города соединены с другими четным числом мостов или если ровно две части города соединены с другими частями нечетным числом мостов. В Кенигсберге город подразделяется всего на четыре части, — и все они соединены с другими частями нечетным числом мостов. На схеме Кенигсберга три точки принадлежат трем линиям, а одна — пяти линиям. Тем самым Эйлер не только сумел объяснить, почему все семь кёнигсбергских мостов невозможно обойти, побывав на каждом один и только один раз, но и придумал правило, применимое к любой сети мостов в любом городе мира. Рассуждения Эйлера отличаются замечательной красотой. По-видимому, такого сорта логические задачи Эйлер и любил решать за обедом.
Задача о семи кёнигсбергских мостах принадлежит к числу так называемых задачах о графах в прикладной математике. Именно она побудила Эйлера к рассмотрению более абстрактных графов. В ходе своих исследований Эйлер открыл фундаментальную истину, относящуюся ко всем графам, — так называемую формулу Эйлера для графов, которую ему удалось доказать за несколько логических шагов. Формула Эйлера для графов выражает незыблемое соотношение между тремя элементами любой графа:
V — R + L = 1,
где
V — число вершин (узлов, или пересечений) в графе,
R — число линий (ребер) в графе,
L — число замкнутых областей в графе.
Таким образом, по утверждению Эйлера, если к числу вершин любого графа прибавить число замкнутых областей и вычесть число его ребер — результат всегда окажется равен единице. Например, все графы на рис. 9 удовлетворяют формуле Эйлера.
Вершины = 4
Области = 3
Линии = 6
Вершины = 6
Области = 1
Линии = 6
Вершины = 5
Области = 10
Линии= 6
Рис. 9. Различные графы, удовлетворяющие формуле Эйлера
Рис. 10. Эйлер доказал свою формулу для графов, продемонстрировав, что она выполняется для простейшего графа, а затем показав, что формула остается верной при любых «дополнениях» к единственной вершине
Можно проверить формулу Эйлера на целой серии графов, и всякий раз она оказывается верной; возникает искушение предположить, что формула Эйлера верна для всех графов. И хотя такой проверки было бы достаточно для физической теории, для обоснования математической теории ее совершенно недостаточно. Единственный способ показать, что формула Эйлера остается в силе для любого мыслимого графа, — построить безупречное с точки зрения логики доказательство. Именно так и поступил Эйлер.
Свое доказательство Эйлер начал с простейшего из графов — с графа, состоящего из одной единственной вершины (рис. 10а ). Ясно, что для такого графа формула Эйлера верна: имеется всего одна вершина, линий и областей нет, поэтому
V + R — L = 1 + 0–0 = 1 .
Затем Эйлер рассмотрел вопрос о том, что произойдет в том случае, если он что-нибудь добавит к этому простейшему графу. Любое добавление к нему требует добавления линии. Любая линия может соединять существующую вершину либо с самой собой, либо с какой-нибудь новой вершиной.
Во-первых, рассмотрим случай, когда дополнительная линия соединяет существующую вершину с самой собой. Как видно из рис. 10б , при добавлении линии в этом случае добавляется также новая область. Следовательно, формула Эйлера для графов остается в силе, так как добавление одной области (+) компенсируется добавлением одной линии (—). При добавлении новых линий того же типа формула Эйлера для графов также останется в силе, так как каждая новая линия порождает новую область.
Во-вторых, рассмотрим, что произойдет, если дополнительная линия соединит существующую вершину с новой вершиной, как на рис.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
Рис. 7. Река Прегиль делит Кёнигсберг на четыре несвязанные части A, B, C и D. Различные части города соединены между собой семью мостами. Можно ли обойти все семь мостов побывав на каждом один и только один раз?
Рис. 8. Упрощенная схема семи кёнигсбергских мостов
Эйлер взял план города и заменил его упрощенной схемой, на которой части города изображены точками (узлами), а мосты — линиями (ребрами), как на рис. 8. Затем Эйлер стал рассуждать так. Чтобы существовал маршрут, позволяющий обойти ровно по одному разу все мосты, каждая точка на схеме должна принадлежать четному числу линий. Это связано с тем, что в середине обхода путешественник, проходя какую-то из частей города, должен войти в нее по одному мосту, а выйти — по другому. Из этого правила существуют лишь два исключения: когда путешественник начинает или завершает обход. В самом начале обхода путешественник покидает некую часть города, и для выхода из нее необходим только один-единственный мост. Если обход начинается и заканчивается в различных частях города, то число мостов, ведущих к каждой из них нечетно. Но если обход начинается и заканчивается в одной и той же части города, то соответствующая ей точка на схеме, как и все другие точки, должна принадлежать четному числу линий (т. е. эта часть города должна быть соединена с другими частями четным числом мостов).
Таким образом, заключил Эйлер, какой бы ни была сеть мостов, обойти все мосты, побывав на каждом по одному и только одному разу, можно только в том случае, если все части города соединены с другими четным числом мостов или если ровно две части города соединены с другими частями нечетным числом мостов. В Кенигсберге город подразделяется всего на четыре части, — и все они соединены с другими частями нечетным числом мостов. На схеме Кенигсберга три точки принадлежат трем линиям, а одна — пяти линиям. Тем самым Эйлер не только сумел объяснить, почему все семь кёнигсбергских мостов невозможно обойти, побывав на каждом один и только один раз, но и придумал правило, применимое к любой сети мостов в любом городе мира. Рассуждения Эйлера отличаются замечательной красотой. По-видимому, такого сорта логические задачи Эйлер и любил решать за обедом.
Задача о семи кёнигсбергских мостах принадлежит к числу так называемых задачах о графах в прикладной математике. Именно она побудила Эйлера к рассмотрению более абстрактных графов. В ходе своих исследований Эйлер открыл фундаментальную истину, относящуюся ко всем графам, — так называемую формулу Эйлера для графов, которую ему удалось доказать за несколько логических шагов. Формула Эйлера для графов выражает незыблемое соотношение между тремя элементами любой графа:
V — R + L = 1,
где
V — число вершин (узлов, или пересечений) в графе,
R — число линий (ребер) в графе,
L — число замкнутых областей в графе.
Таким образом, по утверждению Эйлера, если к числу вершин любого графа прибавить число замкнутых областей и вычесть число его ребер — результат всегда окажется равен единице. Например, все графы на рис. 9 удовлетворяют формуле Эйлера.
Вершины = 4
Области = 3
Линии = 6
Вершины = 6
Области = 1
Линии = 6
Вершины = 5
Области = 10
Линии= 6
Рис. 9. Различные графы, удовлетворяющие формуле Эйлера
Рис. 10. Эйлер доказал свою формулу для графов, продемонстрировав, что она выполняется для простейшего графа, а затем показав, что формула остается верной при любых «дополнениях» к единственной вершине
Можно проверить формулу Эйлера на целой серии графов, и всякий раз она оказывается верной; возникает искушение предположить, что формула Эйлера верна для всех графов. И хотя такой проверки было бы достаточно для физической теории, для обоснования математической теории ее совершенно недостаточно. Единственный способ показать, что формула Эйлера остается в силе для любого мыслимого графа, — построить безупречное с точки зрения логики доказательство. Именно так и поступил Эйлер.
Свое доказательство Эйлер начал с простейшего из графов — с графа, состоящего из одной единственной вершины (рис. 10а ). Ясно, что для такого графа формула Эйлера верна: имеется всего одна вершина, линий и областей нет, поэтому
V + R — L = 1 + 0–0 = 1 .
Затем Эйлер рассмотрел вопрос о том, что произойдет в том случае, если он что-нибудь добавит к этому простейшему графу. Любое добавление к нему требует добавления линии. Любая линия может соединять существующую вершину либо с самой собой, либо с какой-нибудь новой вершиной.
Во-первых, рассмотрим случай, когда дополнительная линия соединяет существующую вершину с самой собой. Как видно из рис. 10б , при добавлении линии в этом случае добавляется также новая область. Следовательно, формула Эйлера для графов остается в силе, так как добавление одной области (+) компенсируется добавлением одной линии (—). При добавлении новых линий того же типа формула Эйлера для графов также останется в силе, так как каждая новая линия порождает новую область.
Во-вторых, рассмотрим, что произойдет, если дополнительная линия соединит существующую вершину с новой вершиной, как на рис.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105