ТОП авторов и книг ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ
Вместе с Гильбертом и другими логиками Рассел предпринял попытку исправить ситуацию и восстановить пошатнувшееся здоровье математики.
Открывшееся противоречие было прямым следствием работы с аксиомами, которые до того предполагались самоочевидными и достаточными для построения остальной математики. Один из выходов заключался в создании дополнительной аксиомы, которая запрещала бы любому множеству быть членом самого себя. Такая аксиома позволила бы одолеть парадокс Рассела, поскольку устраняла бы вопрос о том, включать или не включать в каталог каталогов, не содержащих ссылки на самих себя, сам каталог каталогов.
Следующее десятилетие Рассел занимался анализом того, что составляет самую суть математики, — ее аксиом. В 1919 году он в соавторстве с Альфредом Нортом Уайтхедом опубликовал первый из трех томов «Principia Mathematica». В этой книге они предприняли успешную попытку решить проблему, вызванную парадоксом Рассела. В течение следующих двадцати лет многие математики использовали «Principia Mathematica» в качестве руководства по возведению безупречного здания математики, и к 1930 году, когда Гильберт вышел в отставку, он мог быть уверен в том, что математика находится на верном пути к выздоровлению. Казалось, мечта Гильберта о непротиворечивой логике, достаточно мощной для того, чтобы ответить на любой вопрос, близится к осуществлению.
Но в 1931 году никому не известный двадцатипятилетний математик опубликовал статью, которая навсегда расстроила надежды Гильберта. Курт Гёдель заставил математиков признать, что математика никогда не станет логически совершенной. Неявно в его работе содержалась и та мысль, что некоторые проблемы математики, например, Великая теорема Ферма, могут оказаться неразрешимыми.
Курт Гёдель родился 28 апреля 1906 года в Моравии, входившей тогда в состав Австро-Венгерской империи, а ныне образующей часть Чехии. В раннем детстве Гёдель перенес несколько заболеваний, самым серьезным из которых был приступ ревматизма в шестилетнем возрасте. Дыхание смерти, которое Гёдель ощутил в столь нежном возрасте, привело к мучительной ипохондрии, которой он страдал всю жизнь. В восьмилетнем возрасте, читая медицинский учебник, Гёдель убедился, что у него слабое сердце, хотя ни один из врачей не находил тревожных симптомов. Позднее, уже в конце жизни, Гёдель ошибочно решил, что его хотят отравить, и, отказавшись от приема пищи, уморил себя голодом.
Еще в детстве Гёдель обнаружил необычайные способности к естественным наукам и математике, и за свою пытливую натуру получил семейное прозвище «господин Почему» (der Herr Warum). Гёдель поступил в Венский университет, так и не сделав выбор между математикой и физикой, но вдохновленный зажигательными и страстными лекциями профессора Ф. Фуртвенглера по теории чисел, решил посвятить себя числам. Лекции были тем более необычными, что Фуртвенглер, парализованный от шеи и ниже, вынужден был читать их, сидя в инвалидной коляске, без конспектов, а его ассистент производил выкладки на доске.
К двадцати с небольшим годам Гёдель стал штатным сотрудником математического факультета, но вместе со своими коллегами нередко участвовал в заседаниях Венского кружка — группы философов, собиравшихся для обсуждения наиболее значительных проблем современной логики. Именно в тот период у Гёделя сложились идеи, подорвавшие самые основания математики.
В 1931 году Гёдель опубликовал свою работу «?ber formal unentscheidbare Satze der Principia Mathematica und verwandter Systeme» 5, в которой содержались его так называемые теоремы о неразрешимости. Когда весть о теореме Гёделя достигла Америки, великий математик Джон фон Нейман тотчас же заменил часть своего курса о программе Гильберта обсуждением революционной работы Гёделя.
Гёдель доказал, что попытка создания полной и непротиворечивой математической системы — задача заведомо невыполнимая. Идеи Гёделя можно кратко сформулировать в двух утверждениях.
Первая теорема о неполноте
Если аксиоматическая теория непротиворечива, то существуют теоремы, которые не могут быть ни доказаны, ни опровергнуты.
Вторая теорема о неполноте
Непротиворечивость теории не может быть доказана теми методами, которые в ней формализуются.
По существу, первая теорема Гёделя утверждает, что какая бы система аксиом ни использовалась, всегда найдутся вопросы, на которые математика не сможет найти ответ, — полнота недостижима. Что еще хуже, вторая теорема Гёделя утверждает, что математики никогда не смогут быть уверены в том, что их выбор аксиом не приведет к противоречию, — непротиворечивость никогда не может быть доказана. Гёдель показал, что программа Гильберта неосуществима.
Через несколько десятилетий в своей книге «Портреты по памяти» Бертран Рассел описывал свое впечатление от открытия Гёделя так: «Я жаждал определенности так же, как другие жаждут обрести религиозную веру. Мне казалось, что найти определенность в математике можно с большей вероятностью, чем где-нибудь еще. Но я обнаружил, что многие математические доказательства, которые, в соответствии с ожиданиями моих учителей, мне надлежало принять за истинные, обременены ошибками и что, если определенность действительно может быть обнаружена в математике, то произойдет это в новой области математики с более надежными основаниями, чем те, которые считались надежными прежде. По мере того, как работа продвигалась, мне постоянно приходила на ум басня о слоне и черепахе. Построив слона, на котором мог покоиться математический мир, я обнаружил, что слон нетвердо стоит на ногах, и приступил к построению черепахи, которая удержала слона от падения.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
Открывшееся противоречие было прямым следствием работы с аксиомами, которые до того предполагались самоочевидными и достаточными для построения остальной математики. Один из выходов заключался в создании дополнительной аксиомы, которая запрещала бы любому множеству быть членом самого себя. Такая аксиома позволила бы одолеть парадокс Рассела, поскольку устраняла бы вопрос о том, включать или не включать в каталог каталогов, не содержащих ссылки на самих себя, сам каталог каталогов.
Следующее десятилетие Рассел занимался анализом того, что составляет самую суть математики, — ее аксиом. В 1919 году он в соавторстве с Альфредом Нортом Уайтхедом опубликовал первый из трех томов «Principia Mathematica». В этой книге они предприняли успешную попытку решить проблему, вызванную парадоксом Рассела. В течение следующих двадцати лет многие математики использовали «Principia Mathematica» в качестве руководства по возведению безупречного здания математики, и к 1930 году, когда Гильберт вышел в отставку, он мог быть уверен в том, что математика находится на верном пути к выздоровлению. Казалось, мечта Гильберта о непротиворечивой логике, достаточно мощной для того, чтобы ответить на любой вопрос, близится к осуществлению.
Но в 1931 году никому не известный двадцатипятилетний математик опубликовал статью, которая навсегда расстроила надежды Гильберта. Курт Гёдель заставил математиков признать, что математика никогда не станет логически совершенной. Неявно в его работе содержалась и та мысль, что некоторые проблемы математики, например, Великая теорема Ферма, могут оказаться неразрешимыми.
Курт Гёдель родился 28 апреля 1906 года в Моравии, входившей тогда в состав Австро-Венгерской империи, а ныне образующей часть Чехии. В раннем детстве Гёдель перенес несколько заболеваний, самым серьезным из которых был приступ ревматизма в шестилетнем возрасте. Дыхание смерти, которое Гёдель ощутил в столь нежном возрасте, привело к мучительной ипохондрии, которой он страдал всю жизнь. В восьмилетнем возрасте, читая медицинский учебник, Гёдель убедился, что у него слабое сердце, хотя ни один из врачей не находил тревожных симптомов. Позднее, уже в конце жизни, Гёдель ошибочно решил, что его хотят отравить, и, отказавшись от приема пищи, уморил себя голодом.
Еще в детстве Гёдель обнаружил необычайные способности к естественным наукам и математике, и за свою пытливую натуру получил семейное прозвище «господин Почему» (der Herr Warum). Гёдель поступил в Венский университет, так и не сделав выбор между математикой и физикой, но вдохновленный зажигательными и страстными лекциями профессора Ф. Фуртвенглера по теории чисел, решил посвятить себя числам. Лекции были тем более необычными, что Фуртвенглер, парализованный от шеи и ниже, вынужден был читать их, сидя в инвалидной коляске, без конспектов, а его ассистент производил выкладки на доске.
К двадцати с небольшим годам Гёдель стал штатным сотрудником математического факультета, но вместе со своими коллегами нередко участвовал в заседаниях Венского кружка — группы философов, собиравшихся для обсуждения наиболее значительных проблем современной логики. Именно в тот период у Гёделя сложились идеи, подорвавшие самые основания математики.
В 1931 году Гёдель опубликовал свою работу «?ber formal unentscheidbare Satze der Principia Mathematica und verwandter Systeme» 5, в которой содержались его так называемые теоремы о неразрешимости. Когда весть о теореме Гёделя достигла Америки, великий математик Джон фон Нейман тотчас же заменил часть своего курса о программе Гильберта обсуждением революционной работы Гёделя.
Гёдель доказал, что попытка создания полной и непротиворечивой математической системы — задача заведомо невыполнимая. Идеи Гёделя можно кратко сформулировать в двух утверждениях.
Первая теорема о неполноте
Если аксиоматическая теория непротиворечива, то существуют теоремы, которые не могут быть ни доказаны, ни опровергнуты.
Вторая теорема о неполноте
Непротиворечивость теории не может быть доказана теми методами, которые в ней формализуются.
По существу, первая теорема Гёделя утверждает, что какая бы система аксиом ни использовалась, всегда найдутся вопросы, на которые математика не сможет найти ответ, — полнота недостижима. Что еще хуже, вторая теорема Гёделя утверждает, что математики никогда не смогут быть уверены в том, что их выбор аксиом не приведет к противоречию, — непротиворечивость никогда не может быть доказана. Гёдель показал, что программа Гильберта неосуществима.
Через несколько десятилетий в своей книге «Портреты по памяти» Бертран Рассел описывал свое впечатление от открытия Гёделя так: «Я жаждал определенности так же, как другие жаждут обрести религиозную веру. Мне казалось, что найти определенность в математике можно с большей вероятностью, чем где-нибудь еще. Но я обнаружил, что многие математические доказательства, которые, в соответствии с ожиданиями моих учителей, мне надлежало принять за истинные, обременены ошибками и что, если определенность действительно может быть обнаружена в математике, то произойдет это в новой области математики с более надежными основаниями, чем те, которые считались надежными прежде. По мере того, как работа продвигалась, мне постоянно приходила на ум басня о слоне и черепахе. Построив слона, на котором мог покоиться математический мир, я обнаружил, что слон нетвердо стоит на ногах, и приступил к построению черепахи, которая удержала слона от падения.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105