ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

«Но мне крайне неприятна мысль, что существуют статистические законы, вынуждающие самого бога сначала разыграть каждый отдельный случай». Впрочем, великий физик не исключал и своего права на ошибки…
Как видим, история повторилась. Подобно М. Планку, А. Эйнштейн видит в идее квантования энергии угрозу самому существованию науки. Как-то в беседе он сказал, что, если квантовая механика окажется справедливой, это будет означать конец физики.
Тем более настороженно встретили идеи А. Эйнштейна другие. Долгое время большинству естествоиспытателей был совершенно неясен смысл введенного им понятия фотона. Среди большинства оказались выдающиеся физики, и даже из числа тех, что возглавляли разработку квантовых идей, например, Н. Бор. Фотону не находилось ни аналога в чувственном мире, ни места в мире традиционных понятий.
Об умонастроении тех времен можно хорошо судить по такому факту. В 1907 году А. Эйнштейн принял участие в конкурсе по кафедре теоретической физики Венского университета на должность приват-доцента. В качестве же конкурсной работы представил опубликованную статью, в которой как раз и развивал новые взгляды в области квантовых явлений. Факультет признал работу неудовлетворительной, а профессор Э. Форстер, читавший курс теоретической физики, возвращая статью, грубо сказал: «Я вообще не понимаю, что вы тут написали!» Остается добавить лишь, что в 1921 году А. Эйнштейну была присуждена именно за эти исследования Нобелевская премия.
Не менее парадоксален также случай, имевший место в 1912 году. М. Планк представлял А. Эйнштейна в Прусскую академию. Отметив заслуги претендента в разработке теории относительности, точнее, пока еще специальной теории относительности, М. Планк просил академиков не ставить в вину ученому создание им гипотезы световых квантов. Эту просьбу разделили с молчаливого согласия самого А. Эйнштейна и ряд других физиков.
Конечно, и М. Планк и А. Эйнштейн делали только первые шаги по неизведанной трассе. Их сопротивление можно понять. Они в авангарде движения, а идущим впереди всегда тяжелее. Но ведь и дальше не стало легче.
Последующее развитие связано с построением в 20-х годах на основе квантовой теории света квантовой механики. Ее становление также сопровождалось глубокой внутренней «ломкой сознания» и изобиловало столь же парадоксальными событиями.
К этому времени в физике утвердилась планетарная модель атома. Ее предложил Э. Резерфорд. Рассказывают, что однажды зимой 1911 года Э. Резерфорд, веселый, вошел в лабораторию и громогласно (впрочем, он всегда говорил громко) объявил: «Теперь я знаю, как выглядит атом».
Согласно его идее атом водорода, простейший из всех состоит из тяжелого, положительно заряженного ядра (протона) и вращающегося вокруг него легкого электрона, несущего отрицательный заряд. Более сложные атомы имеют несколько зарядов в ядре и соответствующее им число электронов, которые располагаются по разным орбитам, точь-в-точь как планеты вокруг Солнца.
Получалось красиво. Но эту красоту омрачало одно немаловажное обстоятельство.
В соответствии с классическими взглядами, которые покоились на волновых представлениях, энергию атом излучает непрерывно. Поэтому вращающийся электрон должен был через какое-то время, отдав свою энергию, упасть на ядро. А он не падал. Отчего же?
Эта проблема вообще-то возникла не теперь. Она начала волновать физику еще в конце XIX века, когда установили, что атом неоднороден. Поэтому Э. Резерфорд, предлагая свою планетарную модель, понимал, что это не избавляет ее от противоречия с классикой.
Понимал, но считал, что вопрос об устойчивости предложенного им атома на нынешней стадии не нуждается в рассмотрении. То есть объяснять, почему электрон не падает на ядро, пока не надо. А потом, дескать, будет видно.
И действительно, вскоре ответ сыскался.
Опираясь на гипотезу квантования, Н. Бор предложил следующее решение. Атом устойчив потому, что электрон отдает (и получает) энергию не непрерывно, а все теми же порциями, квантами. И случается это в тот момент, когда электрон переходит, точнее, перескакивает с одной орбиты на другую: с более далекой от ядра на более близкую, если излучает энергию, и наоборот, если получает ее. Так были узаконены знаменитые квантовые скачки, которые внесли в умы настоящий переполох и с которыми физикам еще предстоит помучиться.
Раньше всех парадоксальность понятия квантового скачка почувствовал сам Н. Бор. Поэтому его попытка носила компромиссный характер. Он не мог сразу преодолеть мощного давления традиции, и его построения сочетали квантовые законы с идеями классической механики. Это в какой-то мере приглушало остроту парадоксальной идеи. Электроны ходили у него в атоме по классическим орбитам, а перескакивали с одной орбиты на другую уже по законам квантовых процессов.
Имея в виду отмеченную особенность предложенной модели, немецкий физик В. Гейзенберг писал, что Н. Бор предпочитал балансирование (ein Ihn-und-Hergehen, буквально «туда-сюда-хождение») между волновой и корпускулярной картинами.
Заметим, что это решение вызвало резкий отпор со стороны блюстителей старины. Другой немецкий физик, М. фон Лауэ, например, по поводу гипотезы Н. Бора заявил: «Это вздор! Уравнения Максвелла действительны во всех обстоятельствах, и электрон должен излучать» (то есть должен излучать, по мнению М. Лауэ, непрерывно).
Поиски решения проблем атомной физики продолжались. Следующий шаг был предпринят французским ученым Л. де Бройлем. Он высказал смелую догадку.
Наличие как волновых, так и корпускулярных свойств характерно, по его мнению, не только для света, но представляет общую всем микрообъектам закономерность.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики