ТОП авторов и книг ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ
Поэтому смысл многомерных пространств вполне можно понять, хотя непосредственному восприятию доступно лишь три измерения.
Какие особенности присущи четырехмерному пространству? Один из аспектов размерности касается числа взаимно перпендикулярных направлений, которые существуют в данном пространстве. Например, пространство этой страницы двумерно. Если положить ее на стол, то в любом из углов края страницы образуют две прямые линии, перпендикулярные друг к другу. Из того же угла невозможно провести третью прямую, лежащую в плоскости страницы и перпендикулярную обоим ее краям. Однако направление такой прямой удастся найти, если выйти из плоскости страницы и начертить вертикальную линию. Таким образом, в трехмерном пространстве в отличие от двумерной поверхности страницы существует три взаимно перпендикулярных направления.
В четырехмерном пространстве удалось бы найти четыре взаимно перпендикулярных направления. На рис. 24 изображен случай трех измерений: три взаимно перпендикулярные прямые исчерпывают максимально возможное число таких прямых. Как бы мы ни старались, мы никогда не найдем в обычном пространстве прямую, перпендикулярную всем трем. Любая прямая, перпендикулярная трем названным, должна идти в направлении, не принадлежащем нашему пространству. И хотя мы не в состоянии представить как проходит подобная прямая, очевидно, что формально она могла бы существовать. Ее можно описать, а именно вычислить и систематизировать ее геометрические параметры.
Рис. 24. Вершины прямоугольного параллелепипеда образованы тремя взаимно перпендикулярными прямыми линиями. В трехмерном пространстве из вершины нельзя провести ни одной прямой, которая была бы перпендикулярна всем трем ребрам.
Рис. 25. Знаменитая теорема Пифагора, связывающая между собой длины сторон прямоугольного треугольника, а, b, х, без труда обобщается на случай больших размерностей.
Простым примером сказанного может служить знаменитая геометрическая теорема древнегреческого геометра Пифагора, которая знакома любому школьнику. Эта теорема относится к прямоугольным треугольникам; на рис. 25 длины сторон такого треугольника обозначены соответственно а, b , х. Теорема Пифагора утверждает, что эти величины связаны между собой простой формулой х^2 = а^2 +b^2. Если положить для удобства а = 3, b = 4, то х = 5, поскольку 52 = З2 + 42.
Треугольник, изображенный на рис. 25, является, очевидно, двумерным объектом, однако теорему Пифагора можно без труда обобщить на случай трех измерений. На рис. 26 изображен прямоугольный ящик (параллелепипед) со сторонами а, b, с. Теорема Пифагора в этом случае относится к длине х диагонали, проведенной между противоположными вершинами ящика. Соответствующая формула имеет вид х^2 = а^2+b^2+с^2, очень сходный с двумерным случаем; однако теперь для вычисления длины диагонали нам необходимо знать длины трех взаимно перпендикулярных сторон.
В четырехмерном пространстве для нахождения длины диагонали пришлось бы использовать длины четырех взаимно перпендикулярных сторон, а, b, с и d. В этом случае формула имела бы вид x^2 = а^2 + b^2 + с^2 + d^2. Таким образом, хотя нам и не удается вообразить четырехмерный ящик, мы в состоянии детально проанализировать его геометрические свойства.
Однако при всей важности подобных геометрических рассмотрении такие построения остаются не более чем карточным домиком. И этот домик рухнул с наступлением в конце прошлого века эры современной математики, ознаменовавшейся развитием могущественного раздела математики –теории множеств. Одно из сильнейших потрясений, испытанных математиками, было связано с открытием Георга Кантора. Оно заключалось в том, что линия насчитывает столько же точек, сколько и поверхность. Интуитивное представление, что на поверхности в бесконечное число раз больше точек, чем в проведенной на ней линии, было полностью опровергнуто. Это утверждение было встречено скептически весьма уважаемыми математиками. Некоторые отвергали открытие Кантора, объявив его безумным. Шарль Эрмит писал: “Чтение писаний Кантора напоминает настоящую пытку... Отображение линии на поверхности совершенно неубедительно... подобный произвол... Автору следовало бы подождать с этим...” – и далее в том же духе.
Лишь на рубеже нынешнего столетия справедливость восторжествовала и удалось дать удовлетворительное определение размерности. Благодаря важным работам Л. Е. Дж. Брауэра, Рене Лебега и других была в конце концов найдена надежная процедура сравнения двух пространств с целью сопоставления их размерностей. Соответствующие методы и доказательства основаны на тонких абстрактных понятиях теории множеств, весьма далеких от наших интуитивных представлений. Лишь подобная тщательность и внимание к деталям позволили закрепить формальные основы нашей науки и нашего повседневного опыта.
Рис. 26. Длину диагонали прямоугольного параллелепипеда можно выразить через длины его ребер а, Ь и с, просто обобщив теорему Пифагора. Нетрудно перенести это обобщение и на случай четырех или большего числа измерений пространства.
Почему три?
Какова бы ни была действительная размерность пространства, несомненно, что нашему восприятию непосредственно доступны лишь три измерения. Многие ученые задавались вопросом, можно ли объяснить, почему природа “выбрала” именно число три и является ли это число в определенном смысле выделенным.
В 1917 г. физик Пауль Эренфест написал статью под названием “Каким образом в фундаментальных законах физики отражается тот факт, что пространство трехмерно?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
Какие особенности присущи четырехмерному пространству? Один из аспектов размерности касается числа взаимно перпендикулярных направлений, которые существуют в данном пространстве. Например, пространство этой страницы двумерно. Если положить ее на стол, то в любом из углов края страницы образуют две прямые линии, перпендикулярные друг к другу. Из того же угла невозможно провести третью прямую, лежащую в плоскости страницы и перпендикулярную обоим ее краям. Однако направление такой прямой удастся найти, если выйти из плоскости страницы и начертить вертикальную линию. Таким образом, в трехмерном пространстве в отличие от двумерной поверхности страницы существует три взаимно перпендикулярных направления.
В четырехмерном пространстве удалось бы найти четыре взаимно перпендикулярных направления. На рис. 24 изображен случай трех измерений: три взаимно перпендикулярные прямые исчерпывают максимально возможное число таких прямых. Как бы мы ни старались, мы никогда не найдем в обычном пространстве прямую, перпендикулярную всем трем. Любая прямая, перпендикулярная трем названным, должна идти в направлении, не принадлежащем нашему пространству. И хотя мы не в состоянии представить как проходит подобная прямая, очевидно, что формально она могла бы существовать. Ее можно описать, а именно вычислить и систематизировать ее геометрические параметры.
Рис. 24. Вершины прямоугольного параллелепипеда образованы тремя взаимно перпендикулярными прямыми линиями. В трехмерном пространстве из вершины нельзя провести ни одной прямой, которая была бы перпендикулярна всем трем ребрам.
Рис. 25. Знаменитая теорема Пифагора, связывающая между собой длины сторон прямоугольного треугольника, а, b, х, без труда обобщается на случай больших размерностей.
Простым примером сказанного может служить знаменитая геометрическая теорема древнегреческого геометра Пифагора, которая знакома любому школьнику. Эта теорема относится к прямоугольным треугольникам; на рис. 25 длины сторон такого треугольника обозначены соответственно а, b , х. Теорема Пифагора утверждает, что эти величины связаны между собой простой формулой х^2 = а^2 +b^2. Если положить для удобства а = 3, b = 4, то х = 5, поскольку 52 = З2 + 42.
Треугольник, изображенный на рис. 25, является, очевидно, двумерным объектом, однако теорему Пифагора можно без труда обобщить на случай трех измерений. На рис. 26 изображен прямоугольный ящик (параллелепипед) со сторонами а, b, с. Теорема Пифагора в этом случае относится к длине х диагонали, проведенной между противоположными вершинами ящика. Соответствующая формула имеет вид х^2 = а^2+b^2+с^2, очень сходный с двумерным случаем; однако теперь для вычисления длины диагонали нам необходимо знать длины трех взаимно перпендикулярных сторон.
В четырехмерном пространстве для нахождения длины диагонали пришлось бы использовать длины четырех взаимно перпендикулярных сторон, а, b, с и d. В этом случае формула имела бы вид x^2 = а^2 + b^2 + с^2 + d^2. Таким образом, хотя нам и не удается вообразить четырехмерный ящик, мы в состоянии детально проанализировать его геометрические свойства.
Однако при всей важности подобных геометрических рассмотрении такие построения остаются не более чем карточным домиком. И этот домик рухнул с наступлением в конце прошлого века эры современной математики, ознаменовавшейся развитием могущественного раздела математики –теории множеств. Одно из сильнейших потрясений, испытанных математиками, было связано с открытием Георга Кантора. Оно заключалось в том, что линия насчитывает столько же точек, сколько и поверхность. Интуитивное представление, что на поверхности в бесконечное число раз больше точек, чем в проведенной на ней линии, было полностью опровергнуто. Это утверждение было встречено скептически весьма уважаемыми математиками. Некоторые отвергали открытие Кантора, объявив его безумным. Шарль Эрмит писал: “Чтение писаний Кантора напоминает настоящую пытку... Отображение линии на поверхности совершенно неубедительно... подобный произвол... Автору следовало бы подождать с этим...” – и далее в том же духе.
Лишь на рубеже нынешнего столетия справедливость восторжествовала и удалось дать удовлетворительное определение размерности. Благодаря важным работам Л. Е. Дж. Брауэра, Рене Лебега и других была в конце концов найдена надежная процедура сравнения двух пространств с целью сопоставления их размерностей. Соответствующие методы и доказательства основаны на тонких абстрактных понятиях теории множеств, весьма далеких от наших интуитивных представлений. Лишь подобная тщательность и внимание к деталям позволили закрепить формальные основы нашей науки и нашего повседневного опыта.
Рис. 26. Длину диагонали прямоугольного параллелепипеда можно выразить через длины его ребер а, Ь и с, просто обобщив теорему Пифагора. Нетрудно перенести это обобщение и на случай четырех или большего числа измерений пространства.
Почему три?
Какова бы ни была действительная размерность пространства, несомненно, что нашему восприятию непосредственно доступны лишь три измерения. Многие ученые задавались вопросом, можно ли объяснить, почему природа “выбрала” именно число три и является ли это число в определенном смысле выделенным.
В 1917 г. физик Пауль Эренфест написал статью под названием “Каким образом в фундаментальных законах физики отражается тот факт, что пространство трехмерно?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115