ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Молекулы движутся беспорядочно, сталкиваясь друг с другом и со стенками сосуда. Эти удары и, как уже говорилось, создают давление газа.
Газ – весьма разреженное состояние вещества. Среднее расстояние между молекулами газа при обычных температуре и давлении раз в 20 больше линейного размера молекулы. Движутся молекулы очень быстро – средние скорости их примерно равны километру в секунду.
Одной из первых задач, которую решила теория вероятностей для молекулярной физики, была задача о распределении молекул по скоростям. Сделал это замечательный английский физик Клерк Максвелл.
Распределение молекул по скоростям может быть представлено (описано) таблицей или кривой. Оно даст нам сведения о том, какая доля молекул обладает той или иной скоростью.
Чтобы изобразить распределение скоростей графически, мы откладываем по горизонтальной оси значения скоростей, а по вертикальной – количество (в процентах) движущихся с этой скоростью молекул. Полученная кривая характеризует, разумеется, мгновенное состояние газа.
Кривая распределения скоростей принадлежит к типу статистических кривых, с которыми мы уже неоднократно сталкивались. Тем не менее у нее есть особенности, заслуживающие внимания.
Положим, речь идет не о молекулах, а об автомобилях на улице Горького в Москве. Ровно в 12.00 зафиксированы скорости всех автомобилей. Часть их стоит, часть медленно движется со скоростью 10 километров в час, проклиная пассажиров, которые сгрудились на проезжей части дороги и мешают проезду через перекресток. Какие-то машины перемещаются со скоростями 20, 30… 60 километров в час. Процент водителей, нарушающих правила уличного движения и едущих со скоростями 70, 80 и даже 100 километров в час, окажется немалым, особенно подальше от автоинспекторов. Если посмотреть на этом автодорожном материале график распределения автомобилей по скоростям, то мы увидели бы наверняка, что получилась кривая с максимумом около 40 километров в час, (кстати, с большей средней скоростью днем по Москве и не проехать).
При построении графика скоростей обратите внимание на то, как понимать скорость, равную, скажем, 50 километрам в час. Под ней можно подразумевать все скорости от 45 до 55, если же требуется описать движение поточнее, тогда берут меньший интервал, например от 49 до 51. Точность не может быть беспредельной, и интервал «от – до» всегда молчаливо подразумевается, говорим ли мы о проценте людей, имеющих такой-то рост, о проценте доменных печей такой-то производительности или о таком-то проценте молекул или автомобилей, имеющих такую-то скорость. Впрочем, об этом мы уже говорили.
Без сомнения, распределение скоростей автомобилей подчиняется каким-то закономерностям. Закономерности эти очень сложные, и кривые будут разными для разных улиц, разной погоды, разного времени дня и года.
Что же касается кривой распределения молекул по скоростям, то она обладает тем выдающимся свойством, что зависит только от температуры и от массы молекул. Как выглядит кривая распределения скоростей для молекул заданной массы при данной температуре и что делается с кривой распределения, когда меняется температура, показал Клерк Максвелл.
Очень хотелось бы рассказать, как Максвелл произвел соответствующее вычисление, показать, что кривая Максвелла сродни гауссовой кривой, и продемонстрировать умение его просто объяснять сложные вещи. Однако воздержимся. Во-первых, это увело бы нас в сторону от темы нашей беседы и исказило бы гармонические пропорции книги, которые мы стремимся ей придать. Во-вторых, педагогический опыт подсказывает, что лишь небольшой процент читателей любит долго и упорно следовать за разматыванием логической нити научного открытия.
Но о результатах этого вычисления поговорить надо. Как должна выглядеть кривая, достаточно очевидно. Как и в случае с автомобилями, имеется небольшой процент молекул, движущихся очень быстро (они подверглись случайно серии попутных ударов); есть небольшой процент почти покоящихся молекул (они замедлились лобовыми ударами соседей); и больше всего будет молекул, имеющих скорость, близкую к средней. Почему близкую, а не равную? Здесь есть одна интересная тонкость.
Максимум кривой распределения попадает на то значение, которое встречается наиболее часто. Совпадает ли среднее значение с наиболее часто встречающимся, то есть с наиболее вероятным значением? Да, но только в тех случаях, когда отклонения «влево» и «вправо» одинаково вероятны. А это, конечно, будет не всегда.
Случай кривой распределения молекул по скоростям в этом отношении вполне ясен. От вершины кривой «влево» мы можем двигаться лишь до нуля. В сторону же больших скоростей (вправо) можно двигаться неограниченно далеко, по крайней мере в принципе. Кривая Максвелла получается несимметричной, и точные подсчеты показывают, что средняя скорость больше наиболее вероятной именно по той причине, что хвост кривой «вправо» тянется дальше, чем «влево».
Самым замечательным обстоятельством во всем этом деле является то, что кривая распределения молекул по скоростям при определенной температуре для данного газа остается все время неизменной. Сказанное вовсе не самоочевидно. Что значит неизменность кривой? Это означает то, что доля молекул, обладающих определенной скоростью, все время остается неизменной. А почему, собственно говоря, так должно быть? Ведь мы же говорим о полном хаосе, о полном беспорядке в движении молекул. Почему нельзя представить себе, что случайно в какое-то мгновение все молекулы замедлились, или случайно остановились, в другой момент все убыстрились и движутся со скоростями, лежащими между одним и двумя километрами в секунду?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики