ТОП авторов и книг ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ
И к идеалу, с точки зрения математической, эта кривая приближается тем лучше, чем большее число испытаний проводится. Если число событий, которые мы обрабатываем статистически, исчисляется десятками, то ординаты кривой будут отличаться от идеальных на десятые доли процента; при сотнях испытаний разница уменьшится до сотых долей процента. Во всяком случае, на рисунке размером в страницу мы не отличим кривую распределения, построенную для тридцати событий, от гауссовой кривой идеальной.
Без преувеличения можно сказать, что закон Гаусса является важнейшим оружием в технике, в физике, в медицине – в любой науке.
Знание среднего значения случайной величины и ширины кривой нормального распределения позволяет уверенно судить о возможном и невозможном.
В технике беспорядочные колебания случайной величины около ее среднего значения называют шумом. Такой шум вы слышите, когда снимаете телефонную трубку. Шумом называют обыкновенный белый свет. Шумит молния, излучая весь спектр электромагнитных колебаний. Если шум изображать на телевизионном экране (осциллографе), то будет видна беспорядочная зигзагообразная кривая.
Шум нетрудно ограничить двумя горизонтальными линиями; так сказать, вписать его между нулем и некоторым максимумом. Что можно сказать об этом максимуме, о верхнем пределе шума?
В зависимости от природы, источника, от излучателя, шум может быть как угодно большим. По-одному шумит громкоговоритель в квартире, по-другому – на маленьком полустанке и совсем иной шум громкоговорителей, работающих на улицах Москвы во время парада на Красной площади. Разница основательная. Но если построить графики этих трех шумов, то одну общую черту, продиктованную законом Гаусса, мы обнаружили бы без труда: верхний предел шума превышает средний шум примерно в четыре раза. То есть колокол гауссовой кривой весьма крутой и обрывается исключительно резко, несмотря на то, что с точки зрения формальной математики крылья кривой продолжаются в бесконечность. Из этого графика мы бы увидели, какое маловероятное событие становится практически невозможным. Еще одно замечание: всякое заметное превышение шума над граничной горизонталью, дающее более чем пятикратное отклонение от среднего шума, называется уже не шумом, а сигналом.
Кривая гауссова распределения показывает, на что надо, а на что не надо обращать внимания, когда речь идет о случайной величине. Физические измерения, как и математический анализ, показывают, что отклонения, не превышающие четырехкратного значения среднего отклонения, являются нормой и поэтому не заслуживают ни особого внимания, ни объяснения. Скажем, известно, что физики могут измерять расстояния между атомами с точностью до 0,01 ангстрема. Некто Иванов публично заявил, что его измерения на 0,03 ангстрема отличаются от ранее полученных результатов, и пытается доказать, что его результат лучше имеющегося. Не стоило ему так поступать: не спорить ему надо, а сообщить ученому миру, что он лишь подтвердил ранее достигнутый физиками результат. Вот если бы его измерения отличались на 0,06 ангстрема, тогда другое дело; тогда можно было бы говорить, что какая-то из двух величин неверна и некто Петров был бы прав с точки зрения научной этики, приступив к измерению того же межатомного расстояния третий раз.
Зная гауссовы кривые для разных случайных событий, статистики отвергнут газетное сообщение о новорожденном весом в 6 килограммов, о том, что в городе Киеве 12-го числа рождались только мальчики, а 13-го только девочки, о том, что в Москве в мае месяце не было ни одного дня с температурой ниже 30 градусов, о том, что число автомобильных катастроф в декабре было в десять раз больше, чем в январе, что во вторник по всему городу не было продано ни одного куска мыла, а в среду никто не приобрел в аптеке таблеток пирамидона и т.д.
И право же, такой скептицизм, базирующийся на хорошей статистике и знании закона вероятности, обоснован не хуже, чем расчеты траектории космического корабля. Словом, невероятно – не факт.
Если вероятности невелики…
Во время войны довольно часто стреляли из винтовок по вражеским самолетам. Может показаться, что это безнадежное дело; о прицельной стрельбе здесь и речи быть не может, поскольку лишь пули, пробивающие бензобак или поражающие летчика, приносят результат. Было установлено, что вероятность удачного выстрела равнялась 0,001. Действительно мало. Но если стреляет одновременно много бойцов, то картина меняется.
Примеров, в которых нас интересует вероятность многократно осуществленного события, обладающего малой вероятностью, множество. Например, с задачей попадания в самолет из винтовки полностью совпадает задача о выигрыше в лотерею по нескольким билетам.
Каждая серия «выстрелов» может быть как неудачной, так и закончиться одной удачей, а то и несколькими. Соответствующее распределение вероятностей было найдено французским математиком Пуассоном.
В любом математическом справочнике вы найдете формулу Пуассона, а также таблицы, позволяющие найти интересующую вас вероятность без расчета.
Средняя частота – это результат, идеально совпавший с предсказанием теории вероятностей. Если вероятность выигрыша равняется 0,01, то из ста билетов выиграет 1, а из тысячи – 10. Единица и десять это и есть средние частоты выигрыша для серий в сто и тысячу билетов. Конечно, средняя частота может быть и дробным числом. Так, для серий в десять билетов при том же значении вероятности средняя частота выигрыша равняется 0,1. Это значит, что в среднем одна из десяти серий по десяти билетов будет содержать один выигрыш.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
Без преувеличения можно сказать, что закон Гаусса является важнейшим оружием в технике, в физике, в медицине – в любой науке.
Знание среднего значения случайной величины и ширины кривой нормального распределения позволяет уверенно судить о возможном и невозможном.
В технике беспорядочные колебания случайной величины около ее среднего значения называют шумом. Такой шум вы слышите, когда снимаете телефонную трубку. Шумом называют обыкновенный белый свет. Шумит молния, излучая весь спектр электромагнитных колебаний. Если шум изображать на телевизионном экране (осциллографе), то будет видна беспорядочная зигзагообразная кривая.
Шум нетрудно ограничить двумя горизонтальными линиями; так сказать, вписать его между нулем и некоторым максимумом. Что можно сказать об этом максимуме, о верхнем пределе шума?
В зависимости от природы, источника, от излучателя, шум может быть как угодно большим. По-одному шумит громкоговоритель в квартире, по-другому – на маленьком полустанке и совсем иной шум громкоговорителей, работающих на улицах Москвы во время парада на Красной площади. Разница основательная. Но если построить графики этих трех шумов, то одну общую черту, продиктованную законом Гаусса, мы обнаружили бы без труда: верхний предел шума превышает средний шум примерно в четыре раза. То есть колокол гауссовой кривой весьма крутой и обрывается исключительно резко, несмотря на то, что с точки зрения формальной математики крылья кривой продолжаются в бесконечность. Из этого графика мы бы увидели, какое маловероятное событие становится практически невозможным. Еще одно замечание: всякое заметное превышение шума над граничной горизонталью, дающее более чем пятикратное отклонение от среднего шума, называется уже не шумом, а сигналом.
Кривая гауссова распределения показывает, на что надо, а на что не надо обращать внимания, когда речь идет о случайной величине. Физические измерения, как и математический анализ, показывают, что отклонения, не превышающие четырехкратного значения среднего отклонения, являются нормой и поэтому не заслуживают ни особого внимания, ни объяснения. Скажем, известно, что физики могут измерять расстояния между атомами с точностью до 0,01 ангстрема. Некто Иванов публично заявил, что его измерения на 0,03 ангстрема отличаются от ранее полученных результатов, и пытается доказать, что его результат лучше имеющегося. Не стоило ему так поступать: не спорить ему надо, а сообщить ученому миру, что он лишь подтвердил ранее достигнутый физиками результат. Вот если бы его измерения отличались на 0,06 ангстрема, тогда другое дело; тогда можно было бы говорить, что какая-то из двух величин неверна и некто Петров был бы прав с точки зрения научной этики, приступив к измерению того же межатомного расстояния третий раз.
Зная гауссовы кривые для разных случайных событий, статистики отвергнут газетное сообщение о новорожденном весом в 6 килограммов, о том, что в городе Киеве 12-го числа рождались только мальчики, а 13-го только девочки, о том, что в Москве в мае месяце не было ни одного дня с температурой ниже 30 градусов, о том, что число автомобильных катастроф в декабре было в десять раз больше, чем в январе, что во вторник по всему городу не было продано ни одного куска мыла, а в среду никто не приобрел в аптеке таблеток пирамидона и т.д.
И право же, такой скептицизм, базирующийся на хорошей статистике и знании закона вероятности, обоснован не хуже, чем расчеты траектории космического корабля. Словом, невероятно – не факт.
Если вероятности невелики…
Во время войны довольно часто стреляли из винтовок по вражеским самолетам. Может показаться, что это безнадежное дело; о прицельной стрельбе здесь и речи быть не может, поскольку лишь пули, пробивающие бензобак или поражающие летчика, приносят результат. Было установлено, что вероятность удачного выстрела равнялась 0,001. Действительно мало. Но если стреляет одновременно много бойцов, то картина меняется.
Примеров, в которых нас интересует вероятность многократно осуществленного события, обладающего малой вероятностью, множество. Например, с задачей попадания в самолет из винтовки полностью совпадает задача о выигрыше в лотерею по нескольким билетам.
Каждая серия «выстрелов» может быть как неудачной, так и закончиться одной удачей, а то и несколькими. Соответствующее распределение вероятностей было найдено французским математиком Пуассоном.
В любом математическом справочнике вы найдете формулу Пуассона, а также таблицы, позволяющие найти интересующую вас вероятность без расчета.
Средняя частота – это результат, идеально совпавший с предсказанием теории вероятностей. Если вероятность выигрыша равняется 0,01, то из ста билетов выиграет 1, а из тысячи – 10. Единица и десять это и есть средние частоты выигрыша для серий в сто и тысячу билетов. Конечно, средняя частота может быть и дробным числом. Так, для серий в десять билетов при том же значении вероятности средняя частота выигрыша равняется 0,1. Это значит, что в среднем одна из десяти серий по десяти билетов будет содержать один выигрыш.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78