ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Доказательства, которые я привел в предыдущей главе, несмотря на свои противоречивые выводы, представляют собой типичный отрезок научного рассуждения. Стоит поразмышлять над характером этого рассуждения, которое само по себе является естественным явлением, по крайней мере, столь же удивительным и обширным, как и физика теней.
Тем, кто предпочел бы, чтобы структура реальности была более прозаичной, может показаться немного непропорциональным, даже нечестным, что такие грандиозные выводы могут последовать из того, что крошечное световое пятно окажется на экране здесь, а не там. Тем не менее, это действительно так, и это далеко не первый подобный случай в истории науки. В этом отношении открытие других вселенных очень напоминает открытие других планет древними астрономами. Прежде чем послать межпланетные научно-исследовательские станции на Луну и другие планеты, мы получили всю информацию о планетах из световых пятен (или другого излучения), которое наблюдали в одном месте, а не в другом. Рассмотрим, как было открыто первое определяющее свойство планет, которое отличает их от звезд. Если наблюдать за ночным небом в течение нескольких часов, можно увидеть, что звезды движутся вокруг определенной точки в небе. Траектория их движения остается постоянной, не изменяется и их положение относительно друг друга. Традиционное объяснение заключалось в том, что ночное небо — это огромная «небесная сфера», которая вращается вокруг неподвижной Земли, а звезды — это либо отверстия в сфере, либо вкрапленные сияющие кристаллы. Однако среди тысяч световых точек, которые можно увидеть в небе невооруженным глазом, есть несколько самых ярких, которые остаются неподвижными в течение более долгих промежутков времени, словно прикрепленные к небесной сфере. Их блуждающее движение по небу более сложно. Их называют «планеты», от греческого слова «странник». Их блуждающее движение по небу стало признаком неадекватности объяснения, основанного на небесной сфере.
Последующие объяснения движения планет сыграли важную роль в истории науки. Гелиоцентрическая теория Коперника расположила планеты и Землю на круговых орбитах вокруг Солнца. Кеплер обнаружил, что орбиты — скорее эллипсы, чем круги. Ньютон объяснил эллипсы через свой закон обратных квадратов сил тяготения, и впоследствии его теория помогла предсказать то, что взаимное гравитационное притяжение планет вызывает небольшие отклонения от эллиптических орбит. Наблюдение этих отклонений привело в 1846 году к открытию новой планеты, Нептун, — одному из многих открытий, наглядно подтвердивших теорию Ньютона. Однако несколько десятилетий спустя общая теория относительности Эйнштейна предоставила нам принципиально новое объяснение тяготения на основе искривленного пространства и времени и, таким образом, вновь предсказала немного другое движение планет. Например, эта теория предсказала, что каждый год планета Меркурий будет отклоняться на одну десятитысячную градуса от положения, которое она должна занимать в соответствии с теорией Ньютона. Эта теория также показала, что свет звезд, проходящий близко с Солнцем, из-за тяготения будет отклонятся на величину, в два раза превышающую значение, предсказанное теорией Ньютона. Наблюдение этого отклонения Артуром Эддингтоном в 1919 году часто называют событием, из-за которого мировоззрение Ньютона утратило свою рациональную состоятельность. (Ирония состоит в том, что современные оценки точности эксперимента Эддингтона говорят о том, что такие выводы могли быть преждевременными). Эксперимент, который с тех пор повторяли с большой точностью, заключался в измерении положения пятен (изображений звезд, близких к нимбу Солнца во время солнечного затмения) на фотоснимке.
По мере того, как предсказания астрономов становились более точными, уменьшалась разница между тем, что предсказывали следующие друг за другом теории относительно объектов в ночном небе. Чтобы обнаружить разницу, приходилось строить еще более мощные телескопы и измерительные приборы. Однако объяснения, на которых были основаны эти предсказания, не совпадали. Напротив, как я только что доказал, революционные перемены следовали одна за другой. Таким образом, наблюдения даже меньших физических эффектов вызывали даже большие изменения в нашем мировоззрении. Следовательно, может показаться, что мы делаем грандиозные выводы, исходя из недостаточного количества доказательств. Что оправдывает такие выводы? Можно ли быть уверенным, что только из-за того, что звезда на фотошаблоне Эддингтона оказалась смещенной на доли миллиметра, пространство и время должны быть искривленными; или из-за того, что фотодетектор в определенном положении не регистрирует «удар» слабого света, должны существовать параллельные вселенные?
В самом деле, то, о чем я только что говорил, преуменьшает как слабость, так и косвенность всех результатов наблюдений. Дело в том, что мы не воспринимаем звезды, пятна на фотоснимках или любые другие внешние объекты и события непосредственно. Мы видим что-либо только тогда, когда изображение этого появляются на сетчатке наших глаз, но даже эти изображения мы не воспринимаем, пока они не вызовут электрические импульсы в наших нервных окончаниях и пока наш мозг не получит и не поймет эти импульсы. Таким образом, вещественное доказательство, из-за которого мы склоняемся к тому, чтобы принять одну теорию мировоззрения, а не другую, измеряется даже не в миллиметрах: оно измеряется в тысячных долях миллиметра (расстояние между нервными волокнами глазного нерва) и в сотых долях вольта (изменение электрического потенциала наших нервов, из-за которого мы чувствуем разницу в восприятии двух разных вещей).

Это ознакомительный отрывок книги. Данная книга защищена авторским правом. Для получения полной версии книги обратитесь к нашему партнеру - распространителю легального контента "ЛитРес":


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики