ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Например: «Если наступает день, то становится светло; но сейчас не светло; следовательно, день не наступил». Иногда эту схему смешивают с логически некорректным движением мысли от отрицания основания условного высказывания к отрицанию его следствия: «Если есть первое, есть и второе; но первого нет; значит, нет и второго». Если есть первое, то есть второе; следовательно, если нет второго, то нет и первого. Эта схема позволяет, используя отрицание, менять местами высказывания. К примеру, из высказывания «Если есть гром, есть также молния» получается высказывание «Если нет молнии, то нет и грома». Есть по меньшей мере или первое или второе; но первого нет; значит, есть второе. Например: «Бывает день или ночь; сейчас ночи нет; следовательно, сейчас день». Либо имеет место первое, либо второе; есть первое; значит, нет второго. Посредством этой схемы от утверждения двух взаимоисключающих альтернатив и установления того, какая из них присутствует, осуществляется переход к отрицанию другой альтернативы. Например: «Достоевский родился либо в Москве, либо в Петербурге; он родился в Москве; значит, неверно, что он родился в Петербурге». В американском вестерне «Хороший, плохой и злой» Бандит говорит: «Запомни, Однорукий, что мир делится на две части: тех, кто держит револьвер, и тех, кто копает. Револьвер сейчас у меня, так что бери лопату». Это рассуждение также опирается на рассматриваемую схему. Неверно, что есть и первое, и второе; следовательно, нет первого или нет второго; Есть первое или есть второе; значит, неверно, что нет первого и нет второго. Эти и близкие им схемы позволяют переходить от утверждений с союзом «и» к утверждениям с союзом «или», и наоборот. Используя данные схемы, от утверждения «Неверно, что сегодня ветер и дождь» можно перейти к утверждению «Неверно, что сегодня ветер или неверно, что сегодня дождь» и от утверждения «Амундсен или Скотт был первым на Южном полюсе» перейти к утверждению «Неверно, что ни Амундсен, ни Скотт не является первым человеком, побывавшим на Южном полюсе».Таковы некоторые схемы правильного рассуждения. В дальнейшем эти и другие схемы будут рассмотрены более детально и представлены с использованием специальной логической символики. 6. ТРАДИЦИОННАЯ И СОВРЕМЕННАЯ ЛОГИКА История логики охватывает около двух с половиной тысячелетий. «Старше» формальной логики, пожалуй, только философия и математика.В длинной и богатой событиями истории развития логики отчётливо выделяются два основных этапа. Первый — от древнегреческой логики до возникновения во второй половине прошлого века современной логики. Второй — с этого времени до наших дней.На первом этапе, обычно называемом традиционной логикой , формальная логика развивалась очень медленно. Обсуждавшиеся в ней проблемы мало чем отличались от проблем, поставленных ещё Аристотелем. Это дало повод немецкому философу И.Канту (1724-1804) в своё время придти к выводу, что формальная логика является завершённой наукой, не продвинувшейся со времени Аристотеля ни на один шаг.Кант не заметил, что ещё с XVII в. стали назревать предпосылки для научной революции в логике. Именно в это время получила ясное выражение идея представить доказательство как вычисление, подобное вычислению в математике.Эта идея связана главным образом с именем немецкого философа и математика Г.Лейбница (1646-1716). По Лейбницу, вычисление суммы или разности чисел осуществляется на основе простых правил, принимающих во внимание только форму чисел, а не их смысл. Результат вычисления однозначно предопределяется этими, не допускающими разночтения правилами, и его нельзя оспорить. Лейбниц мечтал о времени, когда умозаключение будет преобразовано в вычисление. Когда это случится, споры, обычные между философами, станут так же невозможны, как невозможны они между вычислителями. Вместо спора они возьмут в руки перья и скажут: «Будем вычислять».Идеи Лейбница не оказали, однако, заметного влияния на его современников. Энергичное развитие логики началось позже, в XIX в.Немецкий математик и логик Г.Фреге (1848-1925) в своих работах стал применять формальную логику для исследования оснований математики. Фреге был убеждён, что «арифметика есть часть логики и не должна заимствовать ни у опыта, ни у созерцания никакого обоснования». Пытаясь свести математику к логике, он реконструировал последнюю. Логическая теория Фреге — провозвестник всех нынешних теорий правильного рассуждения.Идея сведения всей чистой математики к логике была подхвачена английским логиком и философом Б.Расселом (1872-1970). Но последующее развитие логики показало неосуществимость этой грандиозной по своему замыслу попытки. Она привела, однако, к сближению математики и логики и к широкому проникновению плодотворных методов первой во вторую.В России в конце прошлого — начале нынешнего века, когда научная революция в логике набрала силу, ситуация была довольно сложной. И в теории, и в практике преподавания господствовала так называемая «академическая логика», избегавшая острых проблем и постоянно подменявшая науку логику невнятно изложенной методологией науки, истолкованной к тому же по заимствованным и устаревшим образцам. И тем не менее были люди, стоявшие на уровне достижений логики своего времени и внёсшие в её развитие важный вклад. Прежде всего это доктор астрономии Казанского университета, логик и математик П.С.Порецкий. Сдержанное общее отношение к математической логике, разделявшееся многими русскими математиками, во многом осложнило его творчество. Часть своих работ он вынужден был опубликовать за границей.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики