ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Чтобы ответить на этот вопрос, необходимо прежде всего выяснить, как разлагается «КСИ»-функция на четыре компоненты, если ось z направить вдоль D . Вероятность одной из величин + h /4»пи» «альфа»удет тогда выражаться суммой интенсивностей двух четных компонент (второй и четвертой), а вероятность величины – h /4»пи» – суммой интенсивностей нечетных компонент «КСИ»-функции (первой и третьей). Дальнейшее исследование решений уравнения Дирака показывает, что если скорость частицы мала по сравнению со скоростью света, то первыми двумя компонентами волновой функции можно пренебречь по сравнению с двумя последними. Иными словами, если можно пренебречь релятивистскими эффектами, то «КСИ»-функцию достаточно считать двухкомпонентной. При этом интенсивность одной компоненты определяет вероятность одного из возможных значений спина, а интенсивность второй – другого.
Таким образом, мы в точности приходим к теории Паули. Оказывается, последняя – просто нерелятивистское ньютоново приближение теории Дирака. В то же время становится понятным, почему вместо двух компонент в теории Паули «КСИ»-функция в теории Дирака имеет четыре компоненты: существование спина приводит к расщеплению «КСИ»-функции на две компоненты; релятивистские эффекты еще раз приводят к расщеплению каждой из этих двух компонент, причем это второе расщепление исчезает в ньютоновом приближении.
Между прочим заметим, что вся вероятностная интерпретация новой механики очень легко переносится в теорию Дирака ценой некоторого усложнения обозначений. Эта новая точка зрения оказывается здесь совершенно правильной. Прежде всего она позволяет понять проблему тонкой структуры и однозначно обосновать формулы Зоммерфельда, одновременно внося в них исправления.
Действительно, если с помощью уравнения Дирака снова проквантовать атом водорода, то оказывается, что благодаря появлению нового свойства – спина – возникают новые, доселе неизвестные квантовые числа. Они в точности совпадают с внутренними квантовыми числами, введенными эмпирически за несколько лет до этого при классификации спектральных термов, наблюдавшихся на опыте.
Полученная таким путем формула для тонкой структуры совпадает с формулой Зоммерфельда, в которой старые азимутальные квантовые числа заменены новыми квантовыми числами. В результате такой последовательной повсеместной замены достигается полное совпадение экспериментально наблюдаемых спектров с теоретическими. Аналогичные результаты получаются и для более тяжелых атомов, если, конечно, можно довести до конца все расчеты, введя некоторые упрощающие предположения. Таким образом, трудности, связанные с рентгеновскими дублетами, устраняются. Итак, важная идея Зоммерфельда о введении в квантовую теорию релятивистских понятий для объяснения тонкой структуры оказалась верной. Однако, чтобы получить вполне удовлетворительные результаты, понадобилось ввести также спин. Первый успех Зоммерфельда не случаен, однако в его теории отсутствовал еще один важный элемент: спин.
Теории Дирака удалось также полностью объяснить магнитные аномалии. При изучении эффекта Зеемана было обнаружено существование аномальных эффектов, которые вызвали большой интерес теоретиков того времени. Причину такого успеха легко понять. Чтобы добиться объяснения аномальных эффектов, нужно было приписать отношению магнитного момента атома к его механическому моменту значение, отличное от так называемого нормального. Это нормальное значение возникает из гипотезы, что магнитный момент атома – результат исключительно орбитального движения его электронов. Приписывая же электрону в соответствии с гипотезой Уленбека и Гоудсмита собственный магнитный момент, отношение которого к его собственному механическому моменту равно удвоенному по сравнению с нормальным значению, теории Дирака удалось выйти из рамок нормального эффекта Зеемана и предсказать аномальные эффекты. И это успех не только качественный, но и количественный. Действительно, расчеты позволяют подтвердить формулу Ланде и предсказать несколько эмпирически величину коэффициента, введенного им для описания аномальных эффектов.
В действительности очень красивая работа Дирака дала, таким образом, замечательные результаты. Она охватила весь комплекс спектроскопических и магнитных явлений, упорно не поддававшихся никаким попыткам объяснения, которые в конце концов с необходимостью привели к представлению о спине. Вызывает восхищение путь, которым было осуществлено объединение квантовой точки зрения с гипотезой Уленбека и Гоудсмита. Можно спросить, сколь далеко идет теория Дирака в применении и слиянии квантовых и релятивистских представлений, ибо первые требуют существенной дискретности, а вторые пронизаны представлением о непрерывности. Это трудный вопрос, который мы не хотели бы здесь обсуждать. Нам кажется, что слияние релятивистских и квантовых представлений осуществлено в теории Дирака не вполне удовлетворительно. Однако в целом здание этой теории восхитительно и представляет собой в настоящее время кульминационный пункт волновой механики электрона.
Не останавливаясь на изучении других приложений теории Дирака, например на проблеме рассеяния излучения веществом (формула Клейна – Нишины), мы хотели бы поговорить об одном странном следствии уравнений Дирака, которое на первый взгляд составляет слабый пункт теории, а на самом деле оказывается ее достижением.

5. Состояния с отрицательной энергией. Положительный электрон

Уравнения теории Дирака проявляют особые свойства, допуская решения, соответствующие состояниям частицы, энергия которой может быть отрицательной.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики