ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Фреге Готлоб (1848–1925) – немецкий математик и логик, один из создателей логической семантики– прим. ред.). Поскольку все эти результаты были получены не с помощью какого-либо героического метода, а посредством терпеливых детальных рассуждений, я стал думать, что философия, вероятно, заблуждалась, применяя героические средства для разрешения интеллектуальных трудностей, которые можно было преодолеть просто с помощью большей внимательности и аккуратности в рассуждениях. Такой взгляд со временем все больше и больше укреплялся и привел меня к сомнению относительно того, отличается ли философия как исследование от науки и обладает ли она своим собственным методом, являющимся чем-то большим, чем неудачным наследием теологии.
Исследование Фреге не было завершено в первую очередь потому, что оно было применено только к арифметике, а не к другим ветвям математики. Во-вторых, потому, что его посылки не исключали некоторых противоречий, которым оказались подвержены все прошлые системы формальной логики. В сотрудничестве с Уайтхедом мы попытались устранить оба этих недостатка в книге "Principia Mathematical, которой, однако, недостает окончательности в некоторых фундаментальных пунктах (особенно в аксиоме сводимости). (Уайтхед, Альфред Норт (1861–1947) – английский математик и философ, одно время был соавтором и коллегой Рассела по Кембриджскому университету. Впоследствии его деятельность проходила в США.
Отойдя от логико-математической проблематики, он стал развивать «философию организма», заниматься эволюционной космологией, вопросами связи науки и религии – прим. ред.). Но вопреки этим недостаткам, я думаю, никто из читавших данную книгу не будет оспаривать ее основное содержание, а именно, что вся чистая математика может быть выведена из некоторых идей и аксиом формальной логики с помощью логики отношений, без обращения к каким-либо новым неопределенным понятиям или недоказанным утверждениям. Технические методы математической логики, которые разработаны в этой книге, мне представляются весьма мощными и способными обеспечить новый инструмент для обсуждения многих проблем, которые до сих пор оставались предметом философской неопределенности. Книга «Понятие природы и принципы познания природы» Уайтхеда может служить иллюстрацией к тому, что я имею в виду.
Когда чистая математика строится как дедуктивная система, то есть как множество всех тех утверждений, которые могут быть выведены из заданных посылок, тогда становится очевидным, что если мы убеждены в истинности чистой математики, то не потому лишь, что убеждены в истинности множества посылок. Некоторые из посылок являются гораздо менее очевидными, чем их следствия, и мы в них убеждены главным образом из-за их следствий. Это происходит всегда, когда наука строится как дедуктивная система. Не самые простые в логическом отношении, а потому наиболее очевидные утверждения системы составляют основную часть наших доводов для веры в систему. Для эмпирических наук это очевидно. Электродинамика, например, может быть сконцентрирована в уравнениях Максвелла, но в эти уравнения мы верим потому, что существуют эмпирические истины для некоторых их логических следствий. Точно то же самое имеет место в области чистой логики. Первым принципам логики – по крайней мере некоторым из них – мы верим не по непосредственной их оценке, а на основании их следствий. Эпистемологический вопрос «Почему я убежден в этом множестве утверждений», совершенно отличается от логического вопроса – «Какова наименьшая и логически простейшая группа утверждений, из которой может быть выведено это множество утверждений?» Наши доводы для веры в логику и чистую математику являются отчасти лишь индуктивными и вероятными, вопреки тому факту, что в своем логическом порядке утверждения логики и чистой математики следуют из посылок логики посредством чистой дедукции. Я считаю этот пункт важным, поскольку ошибки обязаны своим возникновением ассимиляции логического порядка эпистемологическим, а также и, наоборот, ассимиляции эпистемологического порядка логическим. Единственный способ, посредством которого деятельность математической логики бросает свет на истинность или ложность математики, связан с опровержением предполагаемых антиномий. Это показывает, что математика может быть истинной. Но показать, что математика является истинной, потребует других методов и других рассуждений.
Один из важных эвристических принципов, который Уайтхед и я нашли путем опыта для применения в математической логике и тем самым в других областях, представляет собой форму бритвы Оккама. Когда некоторое множество предполагаемых сущностей (entities) имеет чисто логические свойства, то оказывается, что в значительном большинстве случаев эти предполагаемые сущности могут быть заменены чисто логическими структурами, построенными из сущностей, которые не имеют таких чистых свойств. В подобном случае при интерпретации основной части утверждений, о которых до сих пор думали как: о предполагаемых объектах, мы можем заменить логические структуры, не изменяя в чем-либо детали этой части рассматриваемых утверждений. Это дает экономию, потому что сущности с чисто логическими свойствами всегда выводятся, и если утверждение, в котором они встречаются, может быть интерпретировано без этого вывода, тогда основание для вывода отпадает и наша основная часть утверждений не будет нуждаться в сомнительном шаге. Этот принцип может быть сформулирован в следующей форме «Всюду, где возможно, заменяйте конструкциями из известных сущностей выводы к неизвестным сущностям».
1 2 3 4 5 6 7 8 9 10

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики