ТОП авторов и книг ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ
Любое из этих представлений могло генерировать исходную гипотезу о возможности большого красного смещения в спектре квазаров.
С этих позиций за случайными элементами в рассматриваемом открытии уже прослеживается его внутренняя логика. Здесь выявляется важная сторона регулятивной функции, которую выполняла картина мира по отношению к процессу наблюдения. Эта картина помогала не только сформулировать первичные гипотезы, которые целенаправляли наблюдения, но и помогала найти правильную интерпретацию соответствующих данных, обеспечивая переход от данных наблюдения к фактам науки.
Таким образом, первичная ситуация, характеризующая взаимодействие картины мира с наблюдениями и экспериментами, не отмирает с возникновением в науке конкретных теорий, а сохраняет свои основные характеристики как особый случай развития знания в условиях, когда исследование эмпирически обнаруживает новые объекты, для которых ещё не создано адекватной теории.
Формирование частных теоретических схем и законов
Обратимся теперь к анализу второй ситуации развития теоретических знаний, которая связана с формированием частных теоретических схем и частных теоретических законов. На этом этапе объяснение и предсказание эмпирических фактов осуществляется уже не непосредственно на основе картины мира, а через применение создаваемых теоретических схем и связанных с ними выражений теоретических законов, которые служат опосредующим звеном между картиной мира и опытом.
В развитой науке теоретические схемы создаются вначале как гипотетические модели, а затем обосновываются опытом. Их построение осуществляется за счёт использования абстрактных объектов, ранее сформированных в сфере теоретического знания и применяемых в качестве строительного материала при создании новой модели.
Только на ранних стадиях научного исследования, когда осуществляется переход от преимущественно эмпирического изучения объектов к их теоретическому освоению, конструкты теоретических моделей создаются путём непосредственной схематизации опыта. Но затем они используются в функции средства для построения новых теоретических моделей, и этот способ начинает доминировать в науке. Прежний же метод сохраняется только в рудиментарной форме, а его сфера действия оказывается резко суженной. Он используется главным образом в тех ситуациях, когда наука сталкивается с объектами, для теоретического освоения которых ещё не выработано достаточных средств. Тогда объекты начинают изучаться экспериментальным путём и на этой основе постепенно формируются необходимые идеализации как средства для построения первых теоретических моделей в новой области исследования. Примерами таких ситуаций могут служить ранние стадии становления теории электричества, когда физика формировала исходные понятия – «проводник», «изолятор», «электрический заряд» и т. д. и тем самым создавала условия для построения первых теоретических схем, объясняющих электрические явления.
Большинство теоретических схем науки конструируются не за счёт схематизации опыта, а методом трансляции абстрактных объектов, которые заимствуются из ранее сложившихся областей знания и соединяются с новой «сеткой связей». Следы такого рода операций легко обнаружить, анализируя теоретические модели классической физики. Например, объекты фарадеевской модели электромагнитной индукции «силовые линии» и «проводящее вещество» были абстрагированы не прямо из опытов по обнаружению явления электромагнитной индукции, а заимствовались из области знаний магнитостатики («силовая линия») и знаний о токе проводимости («проводящее вещество»). Аналогичным образом при создании планетарной модели атома представления о центре потенциальных отталкивающих сил внутри атома (ядро) и электронах были почерпнуты из теоретических знаний механики и электродинамики.
В этой связи возникает вопрос об исходных предпосылках, которые ориентируют исследователя в выборе и синтезе основных компонентов создаваемой гипотезы. Хотя такой выбор и представляет собой творческий акт, он имеет определённые основания. Такие основания создаёт принятая исследователем картина мира. Вводимые в ней представления о структуре природных взаимодействий позволяют обнаружить общие черты у различных предметных областей, изучаемых наукой.
Тем самым картина мира «подсказывает», откуда можно заимствовать абстрактные объекты и структуру, соединение которых приводит к построению гипотетической модели новой области взаимодействий.
Целенаправляющая функция картины мира при выдвижении гипотез может быть прослежена на примере становления планетарной модели атома.
Эту модель обычно связывают с именем Резерфорда и часто излагают историю её формирования таким образом, что она возникала как непосредственное обобщение опытов Резерфорда по рассеянию р-частиц на атомах. Однако действительная история науки далека от этой легенды. Резерфорд осуществил свои опыты в 1912 г., а планетарная модель атома впервые была выдвинута в качестве гипотезы физиком японского происхождения Нагаока значительно раньше, в 1904 г.
Здесь отчётливо проявляется логика формирования гипотетических вариантов теоретической модели, которая создаётся «сверху» по отношению к опыту. Эскизно эта логика применительно к ситуации с планетарной моделью атома может быть представлена следующим образом.
Первым импульсом к её построению, равно как и к выдвижению целого ряда других гипотетических моделей (например, модели Томсона), послужили изменения в физической картине мира, которые произошли благодаря открытию электронов и разработке Лоренцом теории электронов.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
С этих позиций за случайными элементами в рассматриваемом открытии уже прослеживается его внутренняя логика. Здесь выявляется важная сторона регулятивной функции, которую выполняла картина мира по отношению к процессу наблюдения. Эта картина помогала не только сформулировать первичные гипотезы, которые целенаправляли наблюдения, но и помогала найти правильную интерпретацию соответствующих данных, обеспечивая переход от данных наблюдения к фактам науки.
Таким образом, первичная ситуация, характеризующая взаимодействие картины мира с наблюдениями и экспериментами, не отмирает с возникновением в науке конкретных теорий, а сохраняет свои основные характеристики как особый случай развития знания в условиях, когда исследование эмпирически обнаруживает новые объекты, для которых ещё не создано адекватной теории.
Формирование частных теоретических схем и законов
Обратимся теперь к анализу второй ситуации развития теоретических знаний, которая связана с формированием частных теоретических схем и частных теоретических законов. На этом этапе объяснение и предсказание эмпирических фактов осуществляется уже не непосредственно на основе картины мира, а через применение создаваемых теоретических схем и связанных с ними выражений теоретических законов, которые служат опосредующим звеном между картиной мира и опытом.
В развитой науке теоретические схемы создаются вначале как гипотетические модели, а затем обосновываются опытом. Их построение осуществляется за счёт использования абстрактных объектов, ранее сформированных в сфере теоретического знания и применяемых в качестве строительного материала при создании новой модели.
Только на ранних стадиях научного исследования, когда осуществляется переход от преимущественно эмпирического изучения объектов к их теоретическому освоению, конструкты теоретических моделей создаются путём непосредственной схематизации опыта. Но затем они используются в функции средства для построения новых теоретических моделей, и этот способ начинает доминировать в науке. Прежний же метод сохраняется только в рудиментарной форме, а его сфера действия оказывается резко суженной. Он используется главным образом в тех ситуациях, когда наука сталкивается с объектами, для теоретического освоения которых ещё не выработано достаточных средств. Тогда объекты начинают изучаться экспериментальным путём и на этой основе постепенно формируются необходимые идеализации как средства для построения первых теоретических моделей в новой области исследования. Примерами таких ситуаций могут служить ранние стадии становления теории электричества, когда физика формировала исходные понятия – «проводник», «изолятор», «электрический заряд» и т. д. и тем самым создавала условия для построения первых теоретических схем, объясняющих электрические явления.
Большинство теоретических схем науки конструируются не за счёт схематизации опыта, а методом трансляции абстрактных объектов, которые заимствуются из ранее сложившихся областей знания и соединяются с новой «сеткой связей». Следы такого рода операций легко обнаружить, анализируя теоретические модели классической физики. Например, объекты фарадеевской модели электромагнитной индукции «силовые линии» и «проводящее вещество» были абстрагированы не прямо из опытов по обнаружению явления электромагнитной индукции, а заимствовались из области знаний магнитостатики («силовая линия») и знаний о токе проводимости («проводящее вещество»). Аналогичным образом при создании планетарной модели атома представления о центре потенциальных отталкивающих сил внутри атома (ядро) и электронах были почерпнуты из теоретических знаний механики и электродинамики.
В этой связи возникает вопрос об исходных предпосылках, которые ориентируют исследователя в выборе и синтезе основных компонентов создаваемой гипотезы. Хотя такой выбор и представляет собой творческий акт, он имеет определённые основания. Такие основания создаёт принятая исследователем картина мира. Вводимые в ней представления о структуре природных взаимодействий позволяют обнаружить общие черты у различных предметных областей, изучаемых наукой.
Тем самым картина мира «подсказывает», откуда можно заимствовать абстрактные объекты и структуру, соединение которых приводит к построению гипотетической модели новой области взаимодействий.
Целенаправляющая функция картины мира при выдвижении гипотез может быть прослежена на примере становления планетарной модели атома.
Эту модель обычно связывают с именем Резерфорда и часто излагают историю её формирования таким образом, что она возникала как непосредственное обобщение опытов Резерфорда по рассеянию р-частиц на атомах. Однако действительная история науки далека от этой легенды. Резерфорд осуществил свои опыты в 1912 г., а планетарная модель атома впервые была выдвинута в качестве гипотезы физиком японского происхождения Нагаока значительно раньше, в 1904 г.
Здесь отчётливо проявляется логика формирования гипотетических вариантов теоретической модели, которая создаётся «сверху» по отношению к опыту. Эскизно эта логика применительно к ситуации с планетарной моделью атома может быть представлена следующим образом.
Первым импульсом к её построению, равно как и к выдвижению целого ряда других гипотетических моделей (например, модели Томсона), послужили изменения в физической картине мира, которые произошли благодаря открытию электронов и разработке Лоренцом теории электронов.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160