ТОП авторов и книг ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ
Эффекты теории относительности, такие как увеличение массы частицы с возрастанием скорости, становятся существенными, только когда скорости начинают приближаться к скорости света.
На Сольвеевском конгрессе в октябре 1927 года к Дираку подошёл Бор. Вот как вспоминает об этом сам Дирак: «Бор подошёл ко мне и спросил: „Над чем сейчас работаете?“ Я ответил: „Пытаюсь получить релятивистскую теорию электрона“. Бор тогда сказал: „Но ведь Клейн уже решил эту проблему“. Я был несколько обескуражен. Я стал объяснять ему, что решение задачи Клейна, основанное на уравнении Клейна—Гордона, неудовлетворительно, так как его нельзя согласовать с моей общей физической интерпретацией квантовой механики. Однако я так и не смог объяснить что-либо Бору, так как наш разговор был прерван началом лекции и вопрос повис в воздухе».
Дирак был недоволен. Он стремился получить уравнения для одного электрона, а не для системы частиц с разными зарядами. Он добился своего, но решение его удивило. Двумерных частиц Паули, хорошо описывающих спин в нерелятивистском случае, явно не хватало. Электрон в теории имел лишнюю степень свободы — свободы, как оказалось, перехода в состояние с отрицательной энергией. Это выглядело настолько дико, что впору было отказаться от всего сделанного.
В поисках выхода Дирак предложил странную идею. Он предположил, что все электроны Вселенной занимают уровни с отрицательной энергией, согласно принципу Паули, образуя ненаблюдаемый фон. Наблюдаемы только электроны с положительной энергией. «Электроны, — пишет Дирак, — распределены по всему миру с большой плотностью в каждой точке. Совершенная пустота есть та область, где все состояния с отрицательной энергией заняты». «Незаполненные состояния с отрицательной энергией представятся как нечто с положительной энергией, потому что для того, чтобы они исчезли, необходимо внести туда один электрон с отрицательной энергией. Мы предполагаем, что эти незанятые состояния с отрицательной энергией суть протоны».
Теория Дирака была встречена скептически. Вызвал недоверие гипотетический фон электронов, кроме того, теория Дирака, по его словам, «была очень симметрична по отношению к электронам и протонам».
Но протон отличается от электрона не только знаком заряда, но и массой. Открытие позитрона, частицы действительно симметричной электрону, заставило по-новому оценить теорию Дирака, которая по существу предсказывала существование позитрона и других античастиц.
На Ленинградской конференции 1933 года Дирак следующим образом излагал сущность теории позитрона: «Допустим, что в том мире, который мы знаем, почти все электронные состояния с отрицательной энергией заняты электронами. Эта совокупность электронов, сидящих на отрицательных уровнях энергии, вследствие своей однородности не может восприниматься нашими чувствами и измерительными приборами, и только лишь не занятые электронами уровни, являясь чем-то исключительным, каким-то нарушением однородности, могут быть замечены нами совершенно таким же образом, как мы замечаем занятые состояния электронов с положительными энергиями. Незанятые состояния с отрицательной энергией, т. е. „дырка“ в распределении электронов с отрицательной энергией будет восприниматься нами как частица с положительной энергией; ведь отсутствие отрицательной кинетической энергии равносильно присутствию положительной кинетической энергии, так как минус на минус даёт плюс… Представляется разумным отождествить такую „дырку“ с позитроном, т. е. утверждать, что позитрон есть „дырка“ в распределении электронов с отрицательной энергией».
«Согласно теории Дирака, — писал Ф. Жолио, — положительный электрон при столкновении со свободным или слабо связанным отрицательным электроном может исчезать, образуя два фотона, испускаемых в противоположных направлениях».
Существует и обратный процесс — «материализация» фотонов, когда «фотоны с достаточно большой энергией при столкновении с тяжёлыми ядрами могут создавать положительные электроны… Фотон, взаимодействуя с ядром, может создать два электрона с противоположными зарядами».
Выведенное английским учёным и опубликованное в 1928 году уравнение называется теперь уравнением Дирака. Оно позволило достичь согласия с экспериментальными данными. В частности, спин, бывший ранее гипотезой, подтверждался уравнением Дирака. Это было триумфом его теории. Кроме того, уравнение Дирака позволило предсказать магнитные свойства электрона (магнитный момент).
Дираку же принадлежит теоретическое предсказание возможности рождения электрон-антиэлектронной пары из фотона достаточно большой энергии. Предсказанный Дираком антиэлектрон был открыт в 1932 году Карлом Д. Андерсеном и был назван позитроном. Позднее подтвердилось и предположение Дирака о возможности рождения пары. Впоследствии Дирак выдвинул гипотезу о том, что и другие частицы, такие как протон, также должны иметь свои аналоги из антиматерии, но для описания таких пар частиц и античастиц потребовалась бы более сложная теория. Существование антипротона было подтверждено экспериментально в 1955 году Оуэном Чемберленом. В настоящее время известны и многие другие античастицы.
Уравнение Дирака позволило внести ясность в проблему рассеяний рентгеновского излучения веществом. Рентгеновское излучение сначала ведёт себя как волна, затем взаимодействует с электроном как частица (фотон) и после столкновения вновь подобна волне. Теория Дирака дала подробное количественное описание такого взаимодействия.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
На Сольвеевском конгрессе в октябре 1927 года к Дираку подошёл Бор. Вот как вспоминает об этом сам Дирак: «Бор подошёл ко мне и спросил: „Над чем сейчас работаете?“ Я ответил: „Пытаюсь получить релятивистскую теорию электрона“. Бор тогда сказал: „Но ведь Клейн уже решил эту проблему“. Я был несколько обескуражен. Я стал объяснять ему, что решение задачи Клейна, основанное на уравнении Клейна—Гордона, неудовлетворительно, так как его нельзя согласовать с моей общей физической интерпретацией квантовой механики. Однако я так и не смог объяснить что-либо Бору, так как наш разговор был прерван началом лекции и вопрос повис в воздухе».
Дирак был недоволен. Он стремился получить уравнения для одного электрона, а не для системы частиц с разными зарядами. Он добился своего, но решение его удивило. Двумерных частиц Паули, хорошо описывающих спин в нерелятивистском случае, явно не хватало. Электрон в теории имел лишнюю степень свободы — свободы, как оказалось, перехода в состояние с отрицательной энергией. Это выглядело настолько дико, что впору было отказаться от всего сделанного.
В поисках выхода Дирак предложил странную идею. Он предположил, что все электроны Вселенной занимают уровни с отрицательной энергией, согласно принципу Паули, образуя ненаблюдаемый фон. Наблюдаемы только электроны с положительной энергией. «Электроны, — пишет Дирак, — распределены по всему миру с большой плотностью в каждой точке. Совершенная пустота есть та область, где все состояния с отрицательной энергией заняты». «Незаполненные состояния с отрицательной энергией представятся как нечто с положительной энергией, потому что для того, чтобы они исчезли, необходимо внести туда один электрон с отрицательной энергией. Мы предполагаем, что эти незанятые состояния с отрицательной энергией суть протоны».
Теория Дирака была встречена скептически. Вызвал недоверие гипотетический фон электронов, кроме того, теория Дирака, по его словам, «была очень симметрична по отношению к электронам и протонам».
Но протон отличается от электрона не только знаком заряда, но и массой. Открытие позитрона, частицы действительно симметричной электрону, заставило по-новому оценить теорию Дирака, которая по существу предсказывала существование позитрона и других античастиц.
На Ленинградской конференции 1933 года Дирак следующим образом излагал сущность теории позитрона: «Допустим, что в том мире, который мы знаем, почти все электронные состояния с отрицательной энергией заняты электронами. Эта совокупность электронов, сидящих на отрицательных уровнях энергии, вследствие своей однородности не может восприниматься нашими чувствами и измерительными приборами, и только лишь не занятые электронами уровни, являясь чем-то исключительным, каким-то нарушением однородности, могут быть замечены нами совершенно таким же образом, как мы замечаем занятые состояния электронов с положительными энергиями. Незанятые состояния с отрицательной энергией, т. е. „дырка“ в распределении электронов с отрицательной энергией будет восприниматься нами как частица с положительной энергией; ведь отсутствие отрицательной кинетической энергии равносильно присутствию положительной кинетической энергии, так как минус на минус даёт плюс… Представляется разумным отождествить такую „дырку“ с позитроном, т. е. утверждать, что позитрон есть „дырка“ в распределении электронов с отрицательной энергией».
«Согласно теории Дирака, — писал Ф. Жолио, — положительный электрон при столкновении со свободным или слабо связанным отрицательным электроном может исчезать, образуя два фотона, испускаемых в противоположных направлениях».
Существует и обратный процесс — «материализация» фотонов, когда «фотоны с достаточно большой энергией при столкновении с тяжёлыми ядрами могут создавать положительные электроны… Фотон, взаимодействуя с ядром, может создать два электрона с противоположными зарядами».
Выведенное английским учёным и опубликованное в 1928 году уравнение называется теперь уравнением Дирака. Оно позволило достичь согласия с экспериментальными данными. В частности, спин, бывший ранее гипотезой, подтверждался уравнением Дирака. Это было триумфом его теории. Кроме того, уравнение Дирака позволило предсказать магнитные свойства электрона (магнитный момент).
Дираку же принадлежит теоретическое предсказание возможности рождения электрон-антиэлектронной пары из фотона достаточно большой энергии. Предсказанный Дираком антиэлектрон был открыт в 1932 году Карлом Д. Андерсеном и был назван позитроном. Позднее подтвердилось и предположение Дирака о возможности рождения пары. Впоследствии Дирак выдвинул гипотезу о том, что и другие частицы, такие как протон, также должны иметь свои аналоги из антиматерии, но для описания таких пар частиц и античастиц потребовалась бы более сложная теория. Существование антипротона было подтверждено экспериментально в 1955 году Оуэном Чемберленом. В настоящее время известны и многие другие античастицы.
Уравнение Дирака позволило внести ясность в проблему рассеяний рентгеновского излучения веществом. Рентгеновское излучение сначала ведёт себя как волна, затем взаимодействует с электроном как частица (фотон) и после столкновения вновь подобна волне. Теория Дирака дала подробное количественное описание такого взаимодействия.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243