ТОП авторов и книг ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ
(Эта группа атомов называется метильной.) Теперь, пожалуйста, соедините валентной черточкой атом углерода этой группы со вторым атомом углерода. Этот второй атом, кроме того, надо связать с парой атомов водорода, а четвертую черточку (раз четыре черточки от одного атома, значит, он четырехвалентный) приведите к атому кислорода. Оставшийся атом водорода следует присоединить к атому кислорода.
Физик сразу же задаст вопрос. А на каком расстоянии атомы, под какими углами друг к другу идут валентные черточки? На подобные вопросы ответы могут быть получены физическими исследованиями. Оставим пока что в стороне вопрос о том, каким образом устанавливается физическими опытами геометрия молекулы. Обширные данные собраны в толстые справочники. В них можно найти сведения о том, на каких расстояниях находятся химически связанные атомы и какие углы (их называют валентными углами) образуют между собой «стерженьки», символизирующие химические валентные силы. Если не очень придираться к тонким различиям, то окажется, что расстояния между атомами одного сорта достаточно универсальны, правда, валентные углы более переменчивы. Поэтому предсказать структуру молекулы не всегда просто. Но об этом речь будет впереди.
Теперь мы можем обратиться к проблеме межмолекулярных сил.
То, что между молекулами действуют силы, очевидно из самых элементарных соображений. Пар любого вещества при подходящих условиях сгущается в каплю. Если так, то молекулы несомненно притягиваются. Вещество сопротивляется сжатию. Значит, находясь на малых расстояниях, молекулы отталкиваются друг от друга. Если на больших расстояниях существует притяжение, а на малых отталкивание, значит, есть и равновесное состояние, когда эти силы уравновешиваются.
Вместо сил взаимодействия гораздо удобнее говорить об энергии взаимодействия. См. статью Г.Я. Мякишева «Взаимодействие атомов и молекул», «Квант» № 11, 1971 г.
Энергию взаимодействия и мерить легче, и понятие это более простое и ясное, чем сила. По кривой энергии взаимодействия можно найти и силу: сила численно равна тангенсу угла наклона касательной к кривой энергии взаимодействия.
Энергией взаимодействия молекул (или атомов, или любых других частиц или тел) называется работа, которую нужно затратить для того, чтобы развести частицы далеко друг от друга – так, чтобы взаимодействие прекратилось. Математик скажет – отдалить на бесконечно большое расстояние. Чем ближе частицы, тем больше работа, необходимая для того, чтобы их оторвать друг от друга. Максимального значения эта работа достигает тогда, когда частицы находятся на равновесном расстоянии друг от друга. Эту работу называют энергией связи. Если частицы сжаты и отталкиваются, то есть находятся на расстоянии меньше равновесного, то работа разрыва станет, конечно, меньше.
Типичная кривая энергии взаимодействия показана на рисунке 2. Все кривые имеют такой характер. Но для конкретных целей надо знать параметры кривой. Прежде всего важна глубина ямы и ее абсцисса – равновесное расстояние. Но в ряде случаев нужны и более подробные сведения о крутизне кривой слева и справа от положения равновесия. Все сведения о веществе таятся в кривой взаимодействия частиц. Зная вид этой кривой, можно рассчитать тепловые и механические свойства вещества.
Кривая энергия взаимодействия, с которой мы вас познакомили, есть зависимость энергии от расстояния. Но о каком расстоянии идет речь? Если наc интересует газообразное состояние вещества, то картина ясна. Молекулы находятся на расстояниях много больше их собственных размеров. Поэтому можно считать, что энергия зависит только от расстояния между центрами молекул. Но в жидкостях и твердых телах дело обстоит совсем не так просто. Здесь расстояние между центрами молекул примерно равно размеру молекулы. В этом случае энергия взаимодействия будет зависеть от взаимной ориентации молекул. Наша кривая энергии теряет физический смысл, если под расстоянием понимать расстояние между центрами молекул.
До самого последнего времени положение дела казалось безвыходным.
Больше четверти века тому назад, рассматривая взаимное расположение молекул в кристаллах, автор обратил внимание на то, что центр каждого атома стремится расположиться между центрами атомов соседней молекулы. Оказалось также, что взаимное расположение атомов молекулы по отншению к атомам соседней молекулы не зависит от того, в какую молекулу эти атомы входят. Короче говоря, создавалось впечатление, что атомы молекулы ведут себя индивидуально, так сказать, не обращая внимания на своих соседей в своей же молекуле. Эти наблюдения позволили высказать гипотезу: энергия взаимодействия молекул равняется энергии взаимодействия всех пар атомов этих молекул. Или, как принято говорить в физике, энергия взаимодействия молекулы аддитивно складывается из энергии взаимодействия атомов, составляющих молекулу.
Проверить это предположение оказалось возможным лишь тогда, когда в обиход вошли электронно-счетные машины.
Возьмем относительно небольшую молекулу, состоящую, скажем, из двадцати атомов. В соседней молекуле тоже двадцать атомов. Значит, взаимодействие только этих двух молекул есть сумма из 20Ч20=400 слагаемых. Но ближайших соседей несколько. Если молекула более или менее шаровидна, то ближайших соседей будет 12 (столько, сколько соседей у каждого шара в плотной упаковке шаров (рис. 3): в одном слое у шара шесть соседей, да по три шара можно положить на этот слой сверху и снизу), а значит, число взаимодействий молекулы только с ближайшими соседями будет измеряться многими тысячами.
1 2 3
Физик сразу же задаст вопрос. А на каком расстоянии атомы, под какими углами друг к другу идут валентные черточки? На подобные вопросы ответы могут быть получены физическими исследованиями. Оставим пока что в стороне вопрос о том, каким образом устанавливается физическими опытами геометрия молекулы. Обширные данные собраны в толстые справочники. В них можно найти сведения о том, на каких расстояниях находятся химически связанные атомы и какие углы (их называют валентными углами) образуют между собой «стерженьки», символизирующие химические валентные силы. Если не очень придираться к тонким различиям, то окажется, что расстояния между атомами одного сорта достаточно универсальны, правда, валентные углы более переменчивы. Поэтому предсказать структуру молекулы не всегда просто. Но об этом речь будет впереди.
Теперь мы можем обратиться к проблеме межмолекулярных сил.
То, что между молекулами действуют силы, очевидно из самых элементарных соображений. Пар любого вещества при подходящих условиях сгущается в каплю. Если так, то молекулы несомненно притягиваются. Вещество сопротивляется сжатию. Значит, находясь на малых расстояниях, молекулы отталкиваются друг от друга. Если на больших расстояниях существует притяжение, а на малых отталкивание, значит, есть и равновесное состояние, когда эти силы уравновешиваются.
Вместо сил взаимодействия гораздо удобнее говорить об энергии взаимодействия. См. статью Г.Я. Мякишева «Взаимодействие атомов и молекул», «Квант» № 11, 1971 г.
Энергию взаимодействия и мерить легче, и понятие это более простое и ясное, чем сила. По кривой энергии взаимодействия можно найти и силу: сила численно равна тангенсу угла наклона касательной к кривой энергии взаимодействия.
Энергией взаимодействия молекул (или атомов, или любых других частиц или тел) называется работа, которую нужно затратить для того, чтобы развести частицы далеко друг от друга – так, чтобы взаимодействие прекратилось. Математик скажет – отдалить на бесконечно большое расстояние. Чем ближе частицы, тем больше работа, необходимая для того, чтобы их оторвать друг от друга. Максимального значения эта работа достигает тогда, когда частицы находятся на равновесном расстоянии друг от друга. Эту работу называют энергией связи. Если частицы сжаты и отталкиваются, то есть находятся на расстоянии меньше равновесного, то работа разрыва станет, конечно, меньше.
Типичная кривая энергии взаимодействия показана на рисунке 2. Все кривые имеют такой характер. Но для конкретных целей надо знать параметры кривой. Прежде всего важна глубина ямы и ее абсцисса – равновесное расстояние. Но в ряде случаев нужны и более подробные сведения о крутизне кривой слева и справа от положения равновесия. Все сведения о веществе таятся в кривой взаимодействия частиц. Зная вид этой кривой, можно рассчитать тепловые и механические свойства вещества.
Кривая энергия взаимодействия, с которой мы вас познакомили, есть зависимость энергии от расстояния. Но о каком расстоянии идет речь? Если наc интересует газообразное состояние вещества, то картина ясна. Молекулы находятся на расстояниях много больше их собственных размеров. Поэтому можно считать, что энергия зависит только от расстояния между центрами молекул. Но в жидкостях и твердых телах дело обстоит совсем не так просто. Здесь расстояние между центрами молекул примерно равно размеру молекулы. В этом случае энергия взаимодействия будет зависеть от взаимной ориентации молекул. Наша кривая энергии теряет физический смысл, если под расстоянием понимать расстояние между центрами молекул.
До самого последнего времени положение дела казалось безвыходным.
Больше четверти века тому назад, рассматривая взаимное расположение молекул в кристаллах, автор обратил внимание на то, что центр каждого атома стремится расположиться между центрами атомов соседней молекулы. Оказалось также, что взаимное расположение атомов молекулы по отншению к атомам соседней молекулы не зависит от того, в какую молекулу эти атомы входят. Короче говоря, создавалось впечатление, что атомы молекулы ведут себя индивидуально, так сказать, не обращая внимания на своих соседей в своей же молекуле. Эти наблюдения позволили высказать гипотезу: энергия взаимодействия молекул равняется энергии взаимодействия всех пар атомов этих молекул. Или, как принято говорить в физике, энергия взаимодействия молекулы аддитивно складывается из энергии взаимодействия атомов, составляющих молекулу.
Проверить это предположение оказалось возможным лишь тогда, когда в обиход вошли электронно-счетные машины.
Возьмем относительно небольшую молекулу, состоящую, скажем, из двадцати атомов. В соседней молекуле тоже двадцать атомов. Значит, взаимодействие только этих двух молекул есть сумма из 20Ч20=400 слагаемых. Но ближайших соседей несколько. Если молекула более или менее шаровидна, то ближайших соседей будет 12 (столько, сколько соседей у каждого шара в плотной упаковке шаров (рис. 3): в одном слое у шара шесть соседей, да по три шара можно положить на этот слой сверху и снизу), а значит, число взаимодействий молекулы только с ближайшими соседями будет измеряться многими тысячами.
1 2 3