ТОП авторов и книг ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ
(Нобелевская премия по физике в 1920 г.). Она не вытекает из первых двух начал, поэтому в силу своей общности с полным правом может рассматриваться как новый закон природы – третье начало термодинамики.
Неравновесная термодинамика
Неравновесные системы характеризуются не только термодинамическими параметрами, но и скоростью их изменения во времени и в пространстве, которая определяет потоки (процессы переноса) и термодинамические силы (градиент температуры, градиент концентрации и др.).
Появление потоков в системе нарушает статистическое равновесие. В любой физической системе всегда происходят процессы, старающиеся вернуть систему в состояние равновесия. Происходит как бы противоборство между процессами переноса, нарушающими равновесие, и внутренними процессами, старающимися его восстановить.
Процессы в неравновесных системах обладают следующими тремя свойствами:
1. Процессы, приводящие систему к термодинамическому равновесию (восстановление), происходят тогда, когда нет особых факторов, сохраняющих неравновесное состояние внутри самой системы. Если исходное состояние сильно неравновесно, а на фоне общего стремления системы к равновесию рождаются представляющие большой интерес подсистемы, в которых энтропия локально уменьшается, то возникают локальные подсистемы, где упорядоченность повышается. При этом общее возрастание для всей системы во много раз больше. В изолированной системе локальное уменьшение энтропии, конечно, является временным. В открытой же системе, через которую длительное время протекают мощные потоки, снижающие энтропию, могут возникнуть какие-то упорядоченные подсистемы. Они могут существовать, изменяясь и развиваясь, очень долго (пока не прекратятся питающие их потоки).
2. Рождение локальных состояний с низкой энтропией приводит к ускорению общего роста энтропии всей системы. Благодаря упорядоченным подсистемам вся система в целом движется быстрее ко все более неупорядоченным состояниям, к термодинамическому равновесию.
Наличие упорядоченной подсистемы может в миллионы и более раз ускорить выход всей системы из «благополучного» метастабильного состояния. В природе ничего «даром» не дается.
3. Упорядоченные состояния представляют собой диссипативные структуры, которые требуют для своего становления большого притока энергии. Такие системы реагируют на малые изменения внешних условий более чутко и более разнообразно, чем термодинамическое равновесное состояние. Они могут легко разрушаться или же превращаться в новые упорядоченные структуры.
Возникновение диссипативных структур носит пороговый характер. Неравновесная термодинамика связала пороговый характер с неустойчивостью. Новая структура всегда является результатом неустойчивости и возникает из флуктуации.
Выдающейся заслугой неравновесной термодинамики является установление того, что самоорганизация присуща не только «живым системам». Способность к самоорганизации является общим свойством всех открытых систем, у которых возможен обмен энергией с окружающей средой. При этом именно неравновесность служит источником упорядоченности.
Этот вывод является основным тезисом для круга идей группы И. Пригожина.
Совместимость второго начала термодинамики со способностью систем к самоорганизации – одно из крупнейших достижений современной неравновесной термодинамики.
Энтропия и вещество. Изменение энтропии в химических реакциях
При повышении температуры растет скорость различных видов движения частиц. Отсюда число микросостояний частиц, а соответственно и термодинамическая вероятность W, и энтропия вещества растут. При переходе вещества из твердого состояния в жидкое увеличивается неупорядоченность частиц и соответственно энтропия (?Sплавл). Особенно резко растет неупорядоченность и соответственно энтропия при переходе вещества из жидкого состояния в газообразное (ASкипен). Энтропия увеличивается при превращении кристаллического вещества в аморфное. Чем выше твердость вещества, тем меньше его энтропия. Увеличение атомов в молекуле и усложнение молекул ведет к увеличению энтропии. Энтропия измеряется в Кал/моль·К (энтропийная единица) и в Дж/моль·К При расчетах применяют значения энтропии в так называемом стандартном состоянии, то есть при 298,15 К (25 °C). Тогда энтропию обозначают S0298. Например, энтропия кислорода 03 – S0298 = 238,8 ед. э., а 02 – S0298 = 205 ед. э.
Абсолютные значения энтропии многих веществ являются табличными и приведены в справочниках. Например:
Н20(ж) = 70,8; Н20(г) = 188,7; СО(г) = 197,54;
СН4(r) = 186,19; Н2(г) = 130,58; НС1(г) = 186,69; НСl(р) = 56,5;
СН30Н(ж) = 126,8; Са(к) = 41,4; Са(ОН)2(к) = 83,4; С(алмаз) = 2,38;
С(графит) = 5,74 и т. д.
Примечание: ж – жидкость, г – газ, к – кристаллы; р – раствор.
Изменение энтропии системы в результате химической реакции (?S) равно сумме энтропий продуктов реакции за вычетом энтропий исходных веществ. Например:
СН4 +Н20(г) = С0 + 3Н2– здесь ?S0298 = S0co.298 + 3S0H2.298 – S0H4.298 – S0H2.298 =
197,54 = 3 · 130,58 – 188,19 – 188,7 = 214,39 Дж/моль · К.
В результате реакции энтропия возросла (AS > 0), возросло число молей газообразных веществ.
Информационная энтропия. Энтропия в биологии
Информационная энтропия служит мерой неопределенности сообщений. Сообщения описываются множеством величин x1, x2 xn, которые могут быть, например, словами: p1, p2…, pn. Информационную энтропию обозначают Sn или Hu. Для определенного дискретного статистического распределения вероятностей Pi используют следующее выражение:
при условии:
Значение Sn = 0, если какая-либо вероятность Pi = 1, а остальные вероятности появления других величин равны нулю.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
Неравновесная термодинамика
Неравновесные системы характеризуются не только термодинамическими параметрами, но и скоростью их изменения во времени и в пространстве, которая определяет потоки (процессы переноса) и термодинамические силы (градиент температуры, градиент концентрации и др.).
Появление потоков в системе нарушает статистическое равновесие. В любой физической системе всегда происходят процессы, старающиеся вернуть систему в состояние равновесия. Происходит как бы противоборство между процессами переноса, нарушающими равновесие, и внутренними процессами, старающимися его восстановить.
Процессы в неравновесных системах обладают следующими тремя свойствами:
1. Процессы, приводящие систему к термодинамическому равновесию (восстановление), происходят тогда, когда нет особых факторов, сохраняющих неравновесное состояние внутри самой системы. Если исходное состояние сильно неравновесно, а на фоне общего стремления системы к равновесию рождаются представляющие большой интерес подсистемы, в которых энтропия локально уменьшается, то возникают локальные подсистемы, где упорядоченность повышается. При этом общее возрастание для всей системы во много раз больше. В изолированной системе локальное уменьшение энтропии, конечно, является временным. В открытой же системе, через которую длительное время протекают мощные потоки, снижающие энтропию, могут возникнуть какие-то упорядоченные подсистемы. Они могут существовать, изменяясь и развиваясь, очень долго (пока не прекратятся питающие их потоки).
2. Рождение локальных состояний с низкой энтропией приводит к ускорению общего роста энтропии всей системы. Благодаря упорядоченным подсистемам вся система в целом движется быстрее ко все более неупорядоченным состояниям, к термодинамическому равновесию.
Наличие упорядоченной подсистемы может в миллионы и более раз ускорить выход всей системы из «благополучного» метастабильного состояния. В природе ничего «даром» не дается.
3. Упорядоченные состояния представляют собой диссипативные структуры, которые требуют для своего становления большого притока энергии. Такие системы реагируют на малые изменения внешних условий более чутко и более разнообразно, чем термодинамическое равновесное состояние. Они могут легко разрушаться или же превращаться в новые упорядоченные структуры.
Возникновение диссипативных структур носит пороговый характер. Неравновесная термодинамика связала пороговый характер с неустойчивостью. Новая структура всегда является результатом неустойчивости и возникает из флуктуации.
Выдающейся заслугой неравновесной термодинамики является установление того, что самоорганизация присуща не только «живым системам». Способность к самоорганизации является общим свойством всех открытых систем, у которых возможен обмен энергией с окружающей средой. При этом именно неравновесность служит источником упорядоченности.
Этот вывод является основным тезисом для круга идей группы И. Пригожина.
Совместимость второго начала термодинамики со способностью систем к самоорганизации – одно из крупнейших достижений современной неравновесной термодинамики.
Энтропия и вещество. Изменение энтропии в химических реакциях
При повышении температуры растет скорость различных видов движения частиц. Отсюда число микросостояний частиц, а соответственно и термодинамическая вероятность W, и энтропия вещества растут. При переходе вещества из твердого состояния в жидкое увеличивается неупорядоченность частиц и соответственно энтропия (?Sплавл). Особенно резко растет неупорядоченность и соответственно энтропия при переходе вещества из жидкого состояния в газообразное (ASкипен). Энтропия увеличивается при превращении кристаллического вещества в аморфное. Чем выше твердость вещества, тем меньше его энтропия. Увеличение атомов в молекуле и усложнение молекул ведет к увеличению энтропии. Энтропия измеряется в Кал/моль·К (энтропийная единица) и в Дж/моль·К При расчетах применяют значения энтропии в так называемом стандартном состоянии, то есть при 298,15 К (25 °C). Тогда энтропию обозначают S0298. Например, энтропия кислорода 03 – S0298 = 238,8 ед. э., а 02 – S0298 = 205 ед. э.
Абсолютные значения энтропии многих веществ являются табличными и приведены в справочниках. Например:
Н20(ж) = 70,8; Н20(г) = 188,7; СО(г) = 197,54;
СН4(r) = 186,19; Н2(г) = 130,58; НС1(г) = 186,69; НСl(р) = 56,5;
СН30Н(ж) = 126,8; Са(к) = 41,4; Са(ОН)2(к) = 83,4; С(алмаз) = 2,38;
С(графит) = 5,74 и т. д.
Примечание: ж – жидкость, г – газ, к – кристаллы; р – раствор.
Изменение энтропии системы в результате химической реакции (?S) равно сумме энтропий продуктов реакции за вычетом энтропий исходных веществ. Например:
СН4 +Н20(г) = С0 + 3Н2– здесь ?S0298 = S0co.298 + 3S0H2.298 – S0H4.298 – S0H2.298 =
197,54 = 3 · 130,58 – 188,19 – 188,7 = 214,39 Дж/моль · К.
В результате реакции энтропия возросла (AS > 0), возросло число молей газообразных веществ.
Информационная энтропия. Энтропия в биологии
Информационная энтропия служит мерой неопределенности сообщений. Сообщения описываются множеством величин x1, x2 xn, которые могут быть, например, словами: p1, p2…, pn. Информационную энтропию обозначают Sn или Hu. Для определенного дискретного статистического распределения вероятностей Pi используют следующее выражение:
при условии:
Значение Sn = 0, если какая-либо вероятность Pi = 1, а остальные вероятности появления других величин равны нулю.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117