ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Атомное тепло могло бы здесь сыграть решающую роль. Представьте себе металлургию… Ведь это редкий случай, когда топливо и руда лежат в непосредственной близости друг от друга. Чаще их приходится куда-то доставлять. Насколько же огромная энергоемкость ядерного горючего снизила бы загрузку железных дорог! Кроме того, современный технологический процесс выплавки чугуна или стали с помощью сжигаемого органического топлива сопровождается немалыми выбросами в атмосферу углекислого газа и сернистого ангидрида. Технологическое тепло от ядерных реакторов освободит металлургические комбинаты отзолы в пыли, от копоти, загазованности, завесы пыли и дыма. Количество вредных отходов, отравляющих землю, воду и воздух, уменьшится в тысячи раз.
А ведь кроме заводов по выплавке чугуна и стали существуют энергоемкие производства, где получают алюминий, цинк, осуществляют крекинг и реформинг нефти и нефтепродуктов, синтез хлорвинила, этилена и аммиака.
Не менее важно внедрение атомной энергетики и в систему теплофикации городов, создание атомных электроцентралей — АТЭЦ и атомных станций теплоснабжения — ACT. Естественно, что при их постройке должны быть учтены дополнительные требования по безопасности населения и обеспечению радиоактивной чистоты на любых режимах работы реакторов. Ведь АТЭЦ и ACT будут сооружаться непосредственно в черте города.
Первые такие станции уже работают, обеспечивая теплом и электроэнергией дома. Особенно целесообразны они в отдаленных местах, лишенных дешевых транспортных путей, куда стоимость доставки топлива делает его поистине золотым, как, например, в северо-восточную часть Сибири.
Атомная энергетика в последние годы развивается особенно быстро. Сегодня общая мощность АЭС во всех странах еще не очень велика — она не превышает 100 миллионов киловатт. Но единичная мощность (электрическая) ядерных реакторов уже достигает 1 миллиона киловатт и больше, а в недалеком будущем она поднимается до 1, 5 и 2 миллионов киловатт, а может быть, будет и еще больше.
Принцип работы гидравлических электростанций (ГЭС) понятен, наверное, каждому. С незапамятных времен научились люди использовать энергию падающей воды и стали строить водяные колеса мельниц на реках, сооружая на равнинных участках плотины, чтобы получить разность уровней. Струи воды направлялись на плицы колеса, ударяли в них и заставляли крутиться все колесо, с которым был соединен жернов. Вот и вся конструкция.
По идее сегодня все то же самое. Только вода с верхнего уровня перетекает на нижний либо по специальным трубам — турбинным трубопроводам, либо движется по водоводам, проложенным прямо в теле плотины. Под напором струи приобретают большую скорость. С силой бьют они по лопастям гидротурбины, приводя ротор во вращение. На одном валу с ротором сидит электрогенератор. Та же мельница.
В 1980 году по заданию редакции журнала «Звезда» я побывал на строительстве крупнейшей гидроэлектростанции Советского Союза — Саяно-Шушенской ГЭС. Перед тем как лететь, познакомился вкратце с основными этапами развития энергосистем в этом регионе.
После пуска крупнейших в мире ГЭС — Братской и Красноярской, после завершения создания к 1963 году единой энергосистемы Сибири — от Омска до Улан-Удэ край получил возможность развивать промышленность, особенно энергоемкие производства.
К концу пятой пятилетки 8, 5 процентов всей установленной мощности гидростанций приходились на европейскую часть СССР и только 15 процентов — на азиатскую. В стране работало множество карликовых энергосистем, которые состояли из электростанций небольшой и средней мощности, раздельно обслуживающих близлежащие промышленные районы. Когда экономисты подсчитали затраты на их сооружение, выяснилось, что на те же капиталовложения можно было бы создать в 2 — 3 раза большую мощность, если бы строить гидростанции с более крупными агрегатами.
Еще одним резервом развития энергетики оказалось создание магистральных сетей сверхвысоких напряжений — для увеличения пропускной способности линий электропередач и перехода в будущем к Единой объединенной энергосистеме. Основой для объединения энергосистем Советского Союза стали в наше время линии с напряжением в 500 и 750 киловольт. Уже ведутся работы по повышению и этого напряжения до 1150 киловольт.
Помните какая была борьба в начале века за постояннный ток? Оказалось, что он имеет в ряде случаев немало преимуществ перед переменным, и в 1962-1965 годах была введена в эксплуатацию линия передачи постоянного тока на 800 киловольт — Волгоград — Донбасс длиной 493 километра. Начались разработки и проектирование двух таких же линий на 1500 киловольт (+/ — 750 кВ). Одна — Экибастуз — Тамбов длиной 2400 километров, воторая — из района Итата в Красноярском крае до Объединенной энергосистемы Юга протяженностью около 3500 километров!.
В 1970 году самая большая Единая энергетическая система европейской части СССР охватывала Зауралье и Закавказье. Она объединяла около 400 электростанций разного типа. Тут были тепловые конденсационные и теплофикационные, гидравлические… Их общая мощность превышала 50 миллионов киловатт. В то же время начинали развиваться и другие объединенные системы: в Центральной Сибири, Северном Казахстане, Средней Азии, в Забайкалье и на Дальнем Востоке. Крупнейшая из них — объединенная система Центральной Сибири включает Иркутскую, Красноярскую, Кузбасскую, Новосибирскую, Томскую, Омскую, Бурятскую и Барнаульскую энергетические системы. В ней будут работать не только такие гиганты, как Саяно-Шушенская ГЭС, но еще и целый куст тепловых электростанций, располагающихся непосредственно у мест добычи топлива.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики