ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Появившийся на фосфоресцирующем слое след, оставляемый электроном, ясно свидетельствует о сходной с частицей природе электрона. Но это не единственная форма, которую может принимать электрон; он также может растворяться в энергетическое пятно и вести себя словно распределенная в пространстве волна. Он может делать то, чего не делает частица. Если им выстрелить в экран с двумя микроскопическими отверстиями, он пройдет сквозь оба отверстия одновременно. Когда волнообразные электроны соударяются, они образуют интерференционные картины. Электрон, как сказочный оборотень, может проявляться и как частица, и как волна.

Такое изменчивое поведение присуще всем элементарным частицам. Оно также характерно для всех явлений, ранее считавшихся чисто волновыми. Свет, гамма-лучи, радиоволны, рентгеновские лучи — все они могут превращаться из волны в частицу и обратно. Сегодня физики рассматривают такие внутриатомные явления не в рамках отдельных категорий волн или частиц, а как единую категорию, обладающую сразу двумя свойствами.

Такие внутриатомные явления были названы квантами Электрон — пример кванта. Квант — синоним волновой частицы, то есть объекта со свойствами частицы и волны.

, то есть мельчайшими частицами, из которых, по мнению физиков, сотворена Вселенная.

Вероятно, самое удивительное свойство этих частиц заключается в том, что кванты проявляются как частицы, только когда мы смотрим на них. Например, когда электрон не наблюдаем, он всегда проявляет себя как волна, что подтверждается экспериментами. Физики смогли прийти к такому выводу благодаря хитроумным опытам, придуманным для обнаружения электрона без его наблюдения. (Здесь следует отметить, что это лишь одно из возможных следствий такого рода экспериментов, а не общее мнение всех физиков, как будет ясно из дальнейшего. Сам Бом дает результатам этих экспериментов другое объяснение.)

Еще раз отметим: такое поведение материи представляется более загадочным, нежели то, к которому мы привыкли в окружающем нас мире. Представьте, что у вас в руке шар, который становится шаром для боулинга только при том условии, что вы на него смотрите. Если посыпать тальком дорожку и запустить такой «квантованный» шар по направлению к кеглям, то он оставлял бы прямой след только в тех местах, когда вы на него смотрели. Но когда вы моргали, то есть не смотрели на шар, он переставал бы чертить прямую линию и оставлял бы широкий волнистый след, наподобие зигзагообразного следа, который оставляет змея на песке пустыни (см. рис. 7).


Рис. 7. В современной физике найдено убедительное доказательство того, что электроны и другие «кванты» проявляют себя как частицы только при условии, что мы наблюдаем за ними. В другое время они ведут себя как волны. Эта ситуация такая же странная, как если бы шар в кегельбане катился по линии, когда на него смотрят, и оставлял волновой след в тот миг, когда наблюдатель моргнул.


С такой же ситуацией столкнулись физики-атомщики, когда впервые наблюдали процесс собирания квантов в частицы.

Физик Ник Герберт, поддерживающий эту теорию, говорит, что иногда ему кажется, что за его спиной мир «всегда загадочен и неясен, и представляет собой беспрерывно текущий квантовый суп». Но когда он оборачивается и пытается увидеть этот «суп», его взор «замораживает» содержимое «супа», и видится лишь привычная картина. Герберт считает, что мы немного похожи на легендарного Мидаса, который никогда не испытал мягкость шелка в ответ на прикосновение человеческой руки, поскольку все, к чему он прикасался, тотчас превращалось в золото.

«Человеческому постижению недоступна истинная природа „квантовой реальности“, — говорит Герберт, — поскольку все, к чему бы мы ни прикоснулись, превращается в материю» [2].


Бом и взаимосвязь явлений микромира


Один из аспектов квантовой реальности, вызвавший особый интерес Бома, заключался в странной взаимосвязи, существующей между, казалось бы, несвязанными событиями на внутриатомном уровне. Удивительным было также безразличие большинства физиков к этому явлению; вследствие такого безразличия один из самых известных примеров взаимосвязи оставался скрытым в течение ряда лет, пока его не обнаружили.

Предположение о такой связи было сделано одним из отцов-основателей квантовой физики Нильсом Бором. Бор указал на то, что если элементарные частицы существуют только в присутствии наблюдателя, тогда бессмысленно говорить о существовании, свойствах и характеристиках частиц до их наблюдения. Это вызвало ропот у многих физиков, поскольку наука в значительной степени основывалась на свойствах явлений «объективного мира». Но если теперь оказалось, что свойства материи зависят от самого акта наблюдения, то что ожидало впереди всю науку? Эйнштейн был встревожен утверждениями Бора, поскольку играл большую роль в создании основ квантовой механики. Особенно он возражал против той гипотезы Бора, согласно которой свойства частиц отсутствуют, пока они не наблюдаемы, так как в сочетании с другими открытиями квантовой физики это означало бы, что элементарные частицы взаимосвязаны самым невероятным образом. Суть этих открытий заключалась в том, что некоторые внутриатомные процессы приводят к созданию пар частиц, имеющих идентичные или очень близкие свойства. Представьте себе весьма нестабильный атом, который физики называют позитроний. Атом позитрония состоит из электрона и позитрона (позитрон — это электрон с положительным зарядом). Поскольку позитрон является античастицей электрона, эти две частицы в конце концов аннигилируют и распадаются на два кванта света, или «фотона», бегущих в противоположных направлениях (способность одного типа частиц превращаться в другой тип — еще одно любопытное свойство квантового микромира).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики