ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Он полагает, что этот процесс может также объяснить фантомные боли, то есть ощущение присутствия ампутированной руки или ноги у некоторых людей. Эти люди часто отмечают странные, вполне реалистические боли, покалывания и зуд на месте ампутированных конечностей, что может быть объяснено голографической памятью конечности, записанной в интерференционной картине мозга.

Экспериментальная проверка топографического мозга

Параллели между работой мозга и голограммами захватили Прибрама, но он понимал, что его теория ничего не значит без солидной экспериментальной проверки. Одним из исследователей, проведших такую проверку, был биолог Пол Питш из Индианского университета. Интересно, что Питш сначала был ярым противником теории Прибрама. В частности, он очень скептически относился к заявлению Прибрама о том, что память не локализована в мозгу.

Чтобы доказать ошибочность воззрений Прибрама, Питш придумал ряд экспериментов, причем в качестве подопытных он выбрал саламандр. В ранних экспериментах он обнаружил, что удаление мозга не убивает саламандру, а только приводит ее в состояние ступора. Как только мозг возвращается к ней, ее поведение полностью восстанавливается.

Питш рассуждал так: если поведение саламандры в процессе питания не обусловлено локализацией соответствующих функций в мозге, то неважно, каким образом мозг располагается у нее в голове. Если же все зависит именно от их локализации, то теория Прибрама опровергнута. Для этого он поменял местами левое и правое полушария мозга саламандры, но к своему разочарованию обнаружил, что саламандра быстро освоила нормальное кормление.

Он взял другую саламандру и поменял местами верхнюю и нижнюю части мозга. Однако вскоре она также стала есть нормально. Обескураженный этим результатом, экспериментатор решился на более радикальные операции. В серии, состоящей из 100 операций, он разрезал мозг на кусочки, переставляя их, и даже удалил жизненно важные участки мозга, но во всех случаях оставшейся ткани мозга хватало для того, чтобы поведение саламандры возвращалось к исходному, нормальному состоянию [11].

Эти и другие результаты превратили Питша в приверженца теории Прибрама и настолько привлекли внимание к его исследованиям, что о них рассказало телевидение в популярной программе «60 минут». Он детально описывает эти эксперименты в своей провидческой книге «Перестановки мозга» («Shufflebrain»).

Математический язык голограммы

Хотя теории, предсказавшие появление голограммы, в 1977 г. впервые сформулировал Денис Габор (впоследствии Нобелевский лауреат), в конце 1960-х и начале 1970-х годов теория Прибрама получила еще более убедительное экспериментальное подтверждение. Когда Габор впервые пришел к идее голографии, он не думал о лазерах. Его целью было улучшить электронный микроскоп, на то время довольно простое и несовершенное устройство. Он использовал исключительно математический подход, основанный на исчислении, изобретенном в XVIII веке французским математиком Жаном Фурье.

Грубо говоря, Фурье разработал математический метод перевода паттерна любой сложности на язык простых волн. Он также показал, как эти волновые формы могут быть преобразованы в первоначальный паттерн. Другими словами, подобно тому, как телевизионная камера переводит визуальный образ в электромагнитные частоты Видимо, ради краткости у автора далее просто «частота» («frequency») подразумеваемых электромагнитных колебаний. — Прим. ред.

, а телевизор восстанавливает по ним первоначальный образ, математический аппарат, разработанный Фурье, преобразует паттерны. Уравнения, используемые для перевода образов в волновую форму и обратно, известны как преобразования Фурье. Именно они позволили Габору перевести изображение объекта в интерференционное «пятно» на голографической пленке, а также изобрести способ обратного преобразования интерференционных паттернов в первоначальное изображение.

Действительно, особое свойство каждой части голограммы отражать целое обусловлено частностями математического преобразования картины, или паттерна, на язык волновых форм.

На протяжении 1960-х и в начале 1970-х годов различные исследователи заявляли о том, что визуальная система работает как своего рода анализатор частот. Поскольку частота является величиной, измеряющей число колебаний волны в секунду, результаты экспериментов свидетельствовали: мозг может функционировать как голограмма.

Однако только в 1979 году нейрофизиологи из Беркли — Рассел и Карен Девалуа — сделали решающее открытие. Исследования, проведенные в 1960-х годах, показали, что каждая клетка коры головного мозга, непосредственно связанная со зрением, настроена на определенный паттерн: некоторые клетки активизируются, когда глаз видит горизонтальную линию, другие — когда глаз воспринимает вертикальную линию и т. п. В итоге многие исследователи заключили, что мозг принимает сигналы от высокоспециализированных клеток, называемых детекторами свойств, и каким-то образом соединяет их для получения визуальной картины мира.

Несмотря на широкую популярность такой точки зрения, Девалуа почувствовали, что это лишь часть правды. Для проверки своего предположения они применили преобразования Фурье для представления черно-белых клеток в простые волновые формы. Затем они провели эксперименты для выяснения того, как клетки мозга в зрительной части коры головного мозга реагируют на эти новые волновые формы. Они обнаружили, что клетки мозга реагировали не на первоначальные образы, а на то, какой вид им придавали преобразования Фурье.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

ТОП авторов и книг     ИСКАТЬ КНИГУ В БИБЛИОТЕКЕ    

Рубрики

Рубрики